

Association of Accounting Technicians of Sri Lanka

Level I Examination - January 2022

Suggested Answers

(102) BUSINESS MATHEMATICS AND STATISTICS (BMS)

Association of Accounting Technicians of Sri Lanka
No.540,Ven. Muruththettuve Ananda Nahimi Mawatha,
Narahenpita, Colombo 05.
Tel : 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA
Level I Examination - January 2022
(102) BUSINESS MATHEMATICS AND STATISTICS SUGGESTED ANSWERS
(Total 40 Marks)
SECTION - A

Suggested Answers to Question One:
1.1 (3)

$$
\begin{aligned}
6 y-4 & =36+y \\
6 y-y & =36+4 \\
5 y & =40 \\
x \quad & =40 / 5 \\
\mathbf{x} \quad & =8
\end{aligned}
$$

$1.2 \quad$ (2)
Simple Interest (I) = Pnr

$$
P=45000, r=8.0 \%=0.08, n=3
$$

$$
=45000 \times 3 \times 0.08
$$

$$
=\text { Rs. } 10800
$$

(03 marks)

1.3 (4)

The probability that a student of this class attends only Mathematics tuition classes is: $\frac{\mathbf{1 7}}{\mathbf{5 0}}$
(03 marks)

1.4 (2)

$$
\begin{aligned}
& \mathrm{L}_{1}=39.5, \quad \begin{array}{l}
\Delta_{1}=38-20=18 \quad \mathrm{C}=10 \\
\Delta_{2}=38-26=12
\end{array} \\
& \text { Mode }\left(\boldsymbol{M}_{\boldsymbol{o}}\right)=\boldsymbol{L}_{\boldsymbol{i}}+\left[\frac{\Delta_{1}}{\Delta_{\mathbf{1}}+\Delta_{2}}\right] \times \boldsymbol{C} \\
& M_{o}=39.5+\left[\frac{18}{18+12}\right] \times 10 \\
& \underline{\boldsymbol{M}_{o}}=\mathbf{4 5 . 5}
\end{aligned}
$$

1.5 (4)

$$
\begin{aligned}
& r=\frac{n \sum x y-\sum x \cdot \sum y}{\sqrt{\left(n \sum x^{2}-\left(\sum x\right)^{2}\right)\left(n \sum y^{2}-\left(\sum y\right)^{2}\right)}} \\
& r=\frac{6 \times 5,190-105 \times 240}{\sqrt{\left(6 \times 2,275-105^{2}\right)\left(6 \times 11,870-240^{2}\right)}}
\end{aligned}
$$

$$
=\underline{+0.9934}
$$

$1.6 \quad$ (1)

$$
\begin{aligned}
Q & =\frac{q_{1}}{q_{0}} \times 100 \\
Q & =\frac{85}{50} \times 100 \\
& =\underline{\underline{\mathbf{1 7 0 \%}}}
\end{aligned}
$$

1.7 (1)

$$
\begin{aligned}
E(X) & =\sum X \times P \\
& =(1 \times 0.30)+(2 \times 0.35)+(3 \times 0.15)+(4 \times 0.20) \\
& =\underline{\mathbf{2 . 2 5}}
\end{aligned}
$$

(03 marks)

$1.8 \quad$ (2)

$S=21,386.41$
$\underline{\underline{S}=21,386}$

$1.9 \quad$ (3)

$\mathrm{T}=2,759-177 \mathrm{x}$
X value for year 2022 is 7

$$
\begin{aligned}
\therefore \mathrm{T} & =2,759-177 \times 7 \\
& =\underline{1,520}
\end{aligned}
$$

$1.10 \quad$ (2)

Cost of product $=\frac{100}{115} \times 3,680=\underline{\text { Rs. } \mathbf{3 , 2 0 0}}$
1.11
$\mathrm{A} \longrightarrow$
(3)
B \qquad (1)
$\mathrm{C} \longrightarrow$
(4)
D \longrightarrow
(2)
1.12

1. Simple random sample
2. Stratified random sample
3. Cluster random sample
4. Systematic random sample
1.13

$$
\mathbf{S}_{\mathbf{n}}=\frac{n}{2}\{\mathbf{2} \boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{d}\} \quad \mathrm{a}=-4, \quad \mathrm{~d}=7, \quad \mathrm{n}=20
$$

$$
S_{20}=\frac{20}{2}\{2 \times(-4)+(20-1) 7\}
$$

$$
S_{20}=10(-8+133)
$$

$$
=1, \mathbf{2 5 0}
$$

Alternative Answer:

$$
\begin{aligned}
1^{\text {st }} \text { Term } & =-4 \\
20^{\text {th }} \text { Term } & =-4+(19 \times 7) \\
& =\underline{\underline{129}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{S}_{\mathbf{2 0}} & =\frac{\mathbf{2 0}}{\mathbf{2}}(\boldsymbol{a}+\boldsymbol{l}) \\
& =\frac{20}{2}(-4+120) \\
& =\underline{\mathbf{1}, \mathbf{2 5 0}}
\end{aligned}
$$

1.14 False
1.15 True

Suggested Answers to Question Two:

Chapter 01 - Fundamental Concepts of Mathematics

(a)

$$
\begin{align*}
& 8 x+3 y=42 \\
& 5 x+2 y=27 \tag{1}
\end{align*}
$$

(1) $\times 2=16 x+6 y=84$ \qquad
(2) $\times 3=15 x-6 y=81$
(3) - (4) $=84-81$

$$
\underline{x=3}
$$

(1) $8 \times 3+3 y=42$

$$
3 y=42-24
$$

$$
3 y=18
$$

$$
y=6
$$

Chapter 01 - Fundamental Concepts of Mathematics

(b)

Method 01-

Monthly salary for the end of 1st year = Rs. 75,000
Monthly salary for the end of 5th year,

$$
\begin{aligned}
S & =x(1+n)^{n} \\
& =75,000(1+0.05)^{4} \\
& =75,000 \times 1,05^{4} \mid \perp A \| \& A \\
& =\underline{\underline{91}, 162.96} K^{\mid}
\end{aligned}
$$

Method 02-

Chapter 07 - Index Numbers and Forecasting

(c)

	q_{1}	q_{0}	p_{1}	p_{0}	$\mathrm{p}_{0} \mathrm{q}_{0}$	$\mathrm{p}_{1} \mathrm{q}_{0}$
A	450	600	120	80	48,000	72,000
B	300	400	250	175	70,000	100,000
C	850	750	60	40	30,000	45,000
					148,000	217,000

$$
\begin{aligned}
& \mathrm{Y} 1=75,000=75,000.00 \\
& \mathrm{Y} 2=75,000 \times 1.05=78,750.00 \\
& \mathrm{Y} 3=78,750 \times 1.05=82.687 .50 \\
& \mathrm{Y} 4=82.687 .50 \times 1.05=86,821.87 \\
& \mathrm{Y} 5=86,821.87 \times 1.05=\underline{\underline{91,162.92}}
\end{aligned}
$$

Laspeyre's Price Index $(L P) \quad=\frac{\sum p_{1} \times q_{0}}{\sum p_{0} \times q_{0}} \times 100 \%$

$$
=\frac{217000}{148000} \times 100 \%
$$

$=\underline{\underline{146.62 \%}}$
(03 marks)
(Total 10 marks)
Suggested Answers to Question Three:
Chapter 03 - Financial Operative Measures for Business
(a)

Total Cost (TC) Function = Variable Cost + Fixed Cost

$$
=-q^{2}+24 q+100,000
$$

Total Revenue (TR) Function $=$ Demand \times Number of units

$$
\begin{aligned}
& =(49-q) \times q \\
& =\underline{49 q-q^{2}}
\end{aligned}
$$

(b)

Marginal Cost (MC) Function $=\frac{d(T C)}{d q}$

$$
\frac{\mathrm{d}(\mathrm{TC})}{d q}=-q^{2}+24 q+100,000
$$

$$
\underline{M C}=-2 q+24
$$

Marginal Revenue (MR) Function $=\frac{d(T R)}{d q}-A$

$$
\begin{aligned}
& \frac{\mathrm{d}(\mathrm{TR})}{d q}=49 \mathrm{q}-\mathrm{q}^{2} \\
& \underline{\underline{\mathbf{M R}}=\mathbf{4 9}-\mathbf{2 q}}
\end{aligned}
$$

(c) At the Break Even Point;

$$
\begin{aligned}
\text { TR } & =T C \\
49 q-q^{2} & =-q^{2}+24 q+100,000 \\
49 q-24 q & =100,000 \\
25 q & =100,000 \\
\underline{q} & =4,000 \text { units }
\end{aligned}
$$

\therefore Break-even quantity $=4,000$ units

Suggested Answers to Question Four:

Chapter 05 - Comparing Two Quantitative Variables

(a) $\sum X=104, \sum Y=139, \sum X Y=2,116, \sum X^{2}=1,466, n=8$

\mathbf{x}	\mathbf{y}	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{x y}$
8	5	64	40
10	10	100	100
9	8	81	72
12	15	144	180
14	16	196	224
15	20	225	300
16	25	256	400
20	40	400	800
$\mathbf{1 0 4}$	$\mathbf{1 3 9}$	$\mathbf{1 , 4 6 6}$	$\mathbf{2 , 1 1 6}$

$\mathbf{b}=\frac{\mathbf{n} \sum \mathbf{X Y}-\sum \mathbf{X} \sum \mathbf{Y}}{\mathbf{n} \sum \mathbf{X}^{\mathbf{2}}-\left(\sum \mathbf{X}\right)^{\mathbf{2}}}$
$\mathrm{b}=\frac{(8 \times 2,116)-(104 \times 139)}{(8 \times 1,466)-104^{2}}$
b $=\frac{16,928-14,456}{11,728-10,816}$
$b=\frac{2,472}{912}$
$b=2.71$
$a=\bar{Y}-b \bar{X}$
$=\frac{\varepsilon y}{n}-\frac{b \varepsilon x}{n}$
$=\frac{139}{8}-\left[2.71 \times \frac{104}{8}\right]$
$=17.375-(2.71 \times 13)$
= 17.375-35.23
$a=-17.86$

The equation,

$$
\begin{aligned}
& Y=a+b x \\
& Y=-17.86+2.71 x \\
& \underline{\underline{Y}}=\mathbf{2 . 7 1 x - \mathbf { 1 7 . 8 6 }}
\end{aligned}
$$

(b) Advertising cost is Rs.25,000/-.

If $x=25$

$$
\begin{aligned}
y & =2.71 x-17.86 \\
& =(2.71 \times 25)-17.86 \\
& =67.75-17.86 \\
& =\underline{49.89}
\end{aligned}
$$

Expected sales quantity $=\underline{\underline{49,890}}$

Suggested Answers to Question Five:

Chapter 04 - Data Presentation and Descriptive Measures

Interval	\boldsymbol{f}	\boldsymbol{x}	$\boldsymbol{f} \boldsymbol{x}$	$\mathbf{x}^{\mathbf{2}}$	$\boldsymbol{f} \mathbf{x}^{\mathbf{2}}$
$40-49$	35	44.5	$1,557.50$	$1,980.25$	$69,308.75$
$50-59$	22	54.5	$1,199.00$	$2,970.25$	$65,345.50$
$60-69$	28	64.5	$1,806.00$	$4,160.25$	$116,487.00$
$70-79$	24	74.5	$1,788.00$	$5,550,25$	$133,206.00$
$80-89$	26	84.5	$2,197.00$	$7,140.25$	$185,646.50$
$90-99$	15	94.5	$1,417.50$	$8,930.25$	$133,953.75$
	$\mathbf{1 5 0}$		$\mathbf{9 , 9 6 5 . 0 0}$	$\mathbf{3 0 , 7 3 1 . 5 0}$	$\mathbf{7 0 3 , 9 4 7 . 5 0}$

(a) Mean $=\frac{\sum f x}{\sum f}$
150
$\mathbf{6 6 . 4 3}$
(03 marks)
(b)

Standard Deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\bar{x}}$

$$
\begin{aligned}
& =\sqrt{\frac{703,947.50}{150}-66.43^{2}} \\
& =\sqrt{4,692.983-4,412.945} \\
& =\sqrt{280.038} \\
& =\underline{\underline{16.734}}
\end{aligned}
$$

(c)

$$
\text { Coefficient of Variation } \begin{aligned}
(\mathrm{V}) & =\frac{\text { Standard Deviation }}{\text { Mean }} \times 100 \% \\
& =\frac{16.734}{66.43} \times 100 \% \\
& =\underline{\underline{\mathbf{2 5} .19}}
\end{aligned}
$$

End of Section B

Suggested Answers to Question Six:

Chapter 02 - Financial Mathematics for Business

(A)
(a)

Method 1:

$$
\begin{aligned}
A & =\frac{S R^{\mathrm{n}}(\mathrm{R}-1)}{\mathrm{R}^{\mathrm{n}}-1} \\
& =\frac{120,000 \times(1+0.08)^{3}(1+0.08-1)}{(1+0.08)^{3}-1} \\
& =\frac{12,093.2352}{0.259712} \\
& =\mathbf{4 6 , 5 6 4 . 0 2}
\end{aligned}
$$

Method 2:

Year	Amount Borrowed	Amount Settled	D.F. (8\%)	Pre- Payment
$\mathbf{0}$	120,000	-	1.000	-
$\mathbf{1}$	-	A		
$\mathbf{2}$	-	A	2.577	2.277 A
$\mathbf{3}$	-	A		

$2.577 A=120,000$

$$
\begin{aligned}
& A=\frac{120,000}{2.577} \\
& A=\underline{\underline{46,565.77}}
\end{aligned}
$$

(b) Amortization Table:

Year	Outstanding amount at the Beginning	Interest (8\%)	Repayment	Outstanding amount at the End
1	120,000	9,600	46,564	83,036
2	83,036	6,643	46,564	43,115
3	43,115	3,449	46,564	-

(03 marks)
(B)

Chapter 02 - Financial Mathematics for Business
(a)

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	
Option 1					
Cash Flow	$(500,000)$	200,000	200,000	200,000	
D.F. (10\%)	1.000	0.909	0.826	0.751	
Present Value	$(500,000)$	181,800	165,200	150,200	
NPV (Option 1)					
Option 2					
Cash Flow	$(350,000)$	150,000	150,000	150,000	
D.F. (10\%)	1.000	0.909	0.826	0.751	
Present Value	$(350,000)$	136,350	123,900	112,650	
NPV (Option 2)					

(b)

$\frac{\text { Option 1 }}{500000}$	$\underline{\text { Option 2 }}$
(2800)	350000
	22,900

The highest NPV is 22,900. Therefore Option 2 must be selected.
(02 marks)
Chapter 06 - Probability and its Applications
(C)

A - Student passes a written exam
B - Student passes a practical exam
$P(A)=1 / 2$
$P(B)=1 / 3$
$-P(A \cap B)=1 / 4$
$P(B / A)$ - Probability that a student passes the practical exam given that he passed the written exam.

$$
\begin{aligned}
\mathbf{P}(\mathbf{B} / \mathbf{A}) & =\frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{A})} \\
& =\frac{1 / 4}{1 / 2} \\
& =\frac{1}{4} \times \frac{2}{1} \\
& =\frac{2}{4} \text { or } \frac{1}{2} \\
& =
\end{aligned}
$$

Chapter 06 - Probability and its Applications

(D)

X: Weights of babies born in a hospital (Kg)

$$
\begin{aligned}
& \mu=2.5 \quad \sigma=0.45 \\
& z=\frac{\mathbf{X}-\mu}{\boldsymbol{\sigma}} \\
& z=\frac{X-2.5}{0.45} \\
& z=\frac{3-2.5}{0.45} \\
& \underline{\underline{z}=1.11}
\end{aligned}
$$

* The probability that a randomly chosen new born baby in this hospital has weight more than $\mathbf{3} \mathbf{~ k g}$ is $\mathbf{0 . 1 3 3 5}$ or $\mathbf{1 3 . 3 5 \%}$.
(03 marks)
(Total 20 marks)

Notice:

These answers compiled and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.

These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers". The fundamental objective of this publication is to add completeness to its series of study texts, designed especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

[^0]
[^0]: © 2021 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

