

### Association of Accounting Technicians of Sri Lanka

# Level I Examination - July 2021

## **Suggested Answers**

### (102) BUSINESS MATHEMATICS AND STATISTICS (BMS)

#### Association of Accounting Technicians of Sri Lanka

No.540,Ven. Muruththettuve Ananda Nahimi Mawatha, Narahenpita, Colombo 05. Tel : 011-2-559 669

A publication of the Education and Training Division

# THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA Level I Examination - July 2021 (102) BUSINESS MATHEMATICS AND STATISTICS SUGGESTED ANSWERS

(Total 40 Marks)

#### **SECTION - A**



If a student having a mobile phone was selected randomly from this group, the probability that the student also has a computer at home is  $\frac{140}{350} = \frac{2}{5}$ 

(03 marks)

#### 1.5 (2)

1, 4, 5, 8, 10, 16, 18, 18, 19, 19, 19, 25  
Median = 
$$\frac{n+1}{2}$$
<sup>th</sup> term  
Median =  $\frac{12+1}{2}$ <sup>th</sup> term  
Median =  $6.5$ <sup>th</sup> term  
Median =  $\frac{16+18}{2}$ <sup>th</sup> term  
Median = 17

(3)  

$$P = \frac{P1}{P0} \times 100$$

$$P = \frac{10}{12} \times 100 = \underline{83\%}$$

(03 marks)

(03 marks)  
1.7 (4)  

$$P(A \cap B) = P(A) + P(B) - P(A \cup B)$$
  
 $P(A \cap B) = 0.30 + 0.50 - 0.70$   
 $P(A \cap B)' = 1 - P(A \cap B)$   
 $P(A \cap B)' = 1 - 0.1$   
 $P(A \cap B)' = 0.9$   
1.8 (3)  
 $X = 6000, r = 0.075, n = 8$  LANKA  
 $FV = \frac{x(1+r)[(1+r)^n - 1]}{r}$   
 $FV = \frac{6000 \times 1.075 \times [1.075^8 - 1]}{0.075}$   
 $FV = 67,379$  This is the most correct value  
 $FV \approx 67,381$   
(03 marks)

100 .....

1.9 (1)

| Season | Seasonal Index | Trend  | Forecasted Sales |
|--------|----------------|--------|------------------|
| Q1     | 1.4            | 12,500 | 17,500           |
| Q2     | 1.2            | 12,000 | 14,400           |
| Q3     | 0.6            | 10,750 | 6,450            |
| Q4     | 0.8            | 9,600  | 7,680            |

(03 marks)

1.10 (2)

|                                | $X(1-(1+r)^{-n})$ | =                | PV                                          |
|--------------------------------|-------------------|------------------|---------------------------------------------|
|                                | r                 | n = 3, r = 0.075 | PV= 500,000,                                |
|                                | $X(1-1.08^{-3})$  | =                | 500,000                                     |
|                                | 0.08              | =                | $\frac{500,000 \times 0.08}{(1-1.08^{-4})}$ |
| This is the most correct value | 194,017           | =                | $\begin{pmatrix} 1 - 1.08 \end{pmatrix}$    |
|                                | <u>194,024</u>    | ~                | x                                           |
| (03 marks)                     |                   |                  |                                             |
|                                |                   |                  |                                             |



(Total 40 marks)

End of Section A

Total (40 Marks)

SECTION - B



#### (c)

| Product | No. Of<br>Units | Angle                                      |
|---------|-----------------|--------------------------------------------|
| А       | 180             | $\frac{180}{360} \times 360 = 180^{\circ}$ |
| В       | 90              | $\frac{90}{360} \times 360 = 90^{\circ}$   |
| С       | 45              | $\frac{45}{360} \times 360 = 45^{\circ}$   |
| D       | 45              | $\frac{45}{360} \times 360 = 45^{\circ}$   |
| Total   | 360             | 360 <sup>0</sup>                           |



(04 marks) (Total 10 marks)

### Suggested Answers to Question Three:



(Total 10 marks)

| Suggested | Answers | to | <b>Ouestion</b> | Four:  |
|-----------|---------|----|-----------------|--------|
| Dassebica |         | w  | Question        | I UMI. |

|     | 00         |            | $\sim$     |                        |        |       |
|-----|------------|------------|------------|------------------------|--------|-------|
| Ch  | apter 05 - | - Comparin | ng Two Qu  | antitative             | Variak | ibles |
| (a) |            |            |            |                        |        |       |
|     | ∑X=64,     | ΣΥ=59, Σ   | XY =552, Σ | X <sup>2</sup> =580, n | = 8    |       |
|     | v          | V          | <b>X</b> 2 | VV                     | 1      |       |
|     | 2          | <b>y</b>   | 0          | Ay<br>0                | -      |       |
|     | 5          | 5          | 9          | 9                      |        |       |
|     | 6          | 2          | 12         | 36                     |        |       |
|     | 8          | 5          | 40         | 64                     |        |       |
|     | 5          | 7          | 35         | 25                     |        |       |
|     | 9          | 6          | 54         | 81                     | 1      |       |
|     | 10         | 9          | 90         | 100                    |        |       |
|     | 11         | 12         | 132        | 121                    |        |       |
|     | 12         | 15         | 180        | 144                    | ]      |       |
|     | 64         | 59         | 552        | 580                    | ]      |       |

b = 
$$\frac{n \sum XY - \sum X \sum Y}{(n \sum X^2 - (\sum X)^2)}$$
  
b =  $\frac{(8 X 552) - (64 X 59)}{(8 X 580) - (64^2)}$   
b =  $\frac{4.416 - 3.776}{4.640 - 4.096}$   
b =  $\frac{640}{544}$   
**b** = **1.1765**  
a =  $\overline{Y} - b\overline{X}$   
a =  $\frac{59}{8} - [1.1765 \times \frac{64}{8}]$   
a =  $7.375 - 1.176 \times 8$   
**a** =  $-2.033$   
Therefore least square regression line is,  
 $Y = a + bx$   
 $Y = -2.033 + 1.176x$   
(07 marks)  
(b)  
Y =  $-2.033 + 1.176x$   
 $8 = -2.033 + 1.176x$   
 $1.176x = 8 + 2.033$   
 $1.176x = 10.033$   
 $\underline{X} = 8.53$  or  $\underline{X} = 9$ 

(03 marks)

(Total 10 marks)

#### Suggested Answers to Question Five:

| Chapter 04 - | - Data Presen | tation and | Descriptive | Measures |
|--------------|---------------|------------|-------------|----------|
|--------------|---------------|------------|-------------|----------|

| Time    | f   | x    | <b>X</b> <sup>2</sup> | Fx <sup>2</sup> | fx     |
|---------|-----|------|-----------------------|-----------------|--------|
| 10 - 19 | 25  | 14.5 | 210.25                | 5,256.25        | 362.50 |
| 20 – 29 | 18  | 24.5 | 600.25                | 10,804.50       | 441    |
| 30 - 39 | 30  | 34.5 | 1,190.25              | 35,707.50       | 1,035  |
| 40 - 49 | 17  | 44.5 | 1,980.25              | 33,664.25       | 756.50 |
| 50 – 59 | 6   | 54.5 | 2,970.25              | 17,821.50       | 327    |
| 60 - 69 | 4   | 64.5 | 4,160.25              | 16,641.50       | 258    |
|         | 100 |      | 11,111.50             | 119,895         | 3,180  |

#### (a)Mode

Mode class is 30-39  $L_1 = 29.5$ ,  $\Delta_1 = 30 - 18 = 12$  C = 10  $\Delta_2 = 30 - 17 = 13$  $L_i + \left[\frac{\Delta_1}{\Delta_1 + \Delta_2}\right] \times C$ Mo =  $29.5 + \left[\frac{12}{12+13}\right]$  $\times 10$ Mo 29.5 + 4.8Mo = <u>34.3</u> M<sub>o</sub> = (03 marks) (b)  $\sum_{x} f X^2 = 119 895$ ∑ f =100 ∑fX = 3180 Κ А  $\frac{\sum fX}{\sum f}$ Mean = <u>3180</u> = 100 = <u>31.80</u> (03 marks) (c) Standard Deviation =  $\sqrt{\frac{\sum fx^2}{\sum f} - \left[\frac{\sum fx}{\sum f}\right]^2}$ 

Standard Deviation = 
$$\sqrt{\frac{119\,895}{100} - \left[\frac{3180}{100}\right]^2}$$
  
= 13.70

(04 marks) (Total 10 marks)

End of Section B



**SECTION - C** 

#### Suggested Answers to Question Six:

| Chap       | Chapter 02 – Financial Mathematics for Business              |                      |              |                   |            |  |  |  |
|------------|--------------------------------------------------------------|----------------------|--------------|-------------------|------------|--|--|--|
| (A)<br>(a) |                                                              |                      |              |                   |            |  |  |  |
|            | $S = x(1 + ar)^n$                                            | X = 300,000,         | r = 8% =0.08 | 3, t=3            |            |  |  |  |
|            | 9                                                            | 5 = 300,000 (1 + 3 × | 0.08)        |                   |            |  |  |  |
|            |                                                              | 5 = 300,000 + 72,000 | כ            |                   |            |  |  |  |
|            | <u></u>                                                      | <u>= 372,000</u>     |              |                   |            |  |  |  |
|            |                                                              |                      |              |                   | (02 marks) |  |  |  |
| (b)        |                                                              |                      |              |                   |            |  |  |  |
|            | $S = X(1+r)^n$                                               | X = 30               | 00,000, r=12 | /4% =0.03, n = 3× | 4 =12      |  |  |  |
|            | $S = 300\ 000 \times (1 + 0.03)^{12}$<br>S = 300,000 × 1.426 |                      |              |                   |            |  |  |  |
|            | <u>3 - 427,800</u>                                           |                      |              |                   | (02 marks) |  |  |  |
| Chap       | oter 02 - Financ                                             | ial Mathematics fo   | or Business  |                   |            |  |  |  |
| (B)<br>(a) |                                                              |                      |              |                   |            |  |  |  |
|            |                                                              | 0                    | 1            | 2                 | 3          |  |  |  |
| Inves      | stment                                                       | (500,000)            |              |                   |            |  |  |  |
| Net 0      | Cash Flow                                                    | SRI                  | 250,000      | 375,000           | 50,000     |  |  |  |
|            |                                                              | (500,000)            | 250,000      | 375,000           | 50,000     |  |  |  |
| 10%        |                                                              | 1                    | 0.909        | 0.826             | 0.751      |  |  |  |
| DCF        |                                                              | (500,000)            | 227,250      | 309,750           | 37,550     |  |  |  |
| NPV        | = 74,550                                                     |                      |              |                   |            |  |  |  |
|            |                                                              |                      |              |                   |            |  |  |  |

(04 marks)

| NPV    |
|--------|
| 74,550 |
| 80,400 |
|        |

Since the NPV of the project B is higher than project A, Project B is the best project to undertake.

(02 marks)

(C)

| 1 | _ | ۱ |
|---|---|---|
| L | а |   |
| I | ~ | , |

| х  | р    | хр    |
|----|------|-------|
| -1 | 0.32 | -0.32 |
| 0  | 0.01 | 0.00  |
| 1  | 0.02 | 0.02  |
| 2  | 0.04 | 0.08  |
| 3  | 0.40 | 1.20  |
| 4  | 0.21 | 0.84  |
|    |      | 1.82  |

 $E(X) = \sum X \times P$  $= \underline{\mathbf{1.82}}$ 

(b)

X : time taken by a runner to finish a marathon (min)  $\mu$ =240  $\sigma$  =40



r(166 < X < 185) = 0.4573 + 0.3944 = <u>0.8517 or 85.17%</u>

The probability that a randomly chosen adult male has a height between 166cm and 185cm is 85.17%.

(03 marks)

(03 marks)

102/BMS

| Item | <b>q</b> 1 | q1 | $\mathbf{q}_0$ | <b>q</b> <sub>1</sub> <b>P</b> <sub>1</sub> | $q_0p_1$ |
|------|------------|----|----------------|---------------------------------------------|----------|
| x    | 100        | 15 | 70             | 1,500                                       | 1,050    |
| У    | 250        | 40 | 280            | 10,000                                      | 11,200   |
| Z    | 130        | 60 | 90             | 7,800                                       | 5,400    |
|      |            |    |                | 19,300                                      | 17,650   |

Laspeyre's Quantity Index  $=\frac{\sum P0q1}{\sum P0q0} \times 100\%$ 

$$=\frac{19,300}{17,650} \times 100\%$$

<u>= 109%</u>



(04 marks)

(Total 20 marks)

End of Section C

#### Notice:

These answers compiled and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.

These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers". The fundamental objective of this publication is to add completeness to its series of study texts, designed especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.



<sup>© 2021</sup> by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

