

Association of Accounting Technicians of Sri Lanka

Level I Examination - July 2021

Suggested Answers

(102) BUSINESS MATHEMATICS AND STATISTICS (BMS)

Association of Accounting Technicians of Sri Lanka
No.540,Ven. Muruththettuve Ananda Nahimi Mawatha,
Narahenpita, Colombo 05.
Tel : 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA Level I Examination - July 2021
(102) BUSINESS MATHEMATICS AND STATISTICS SUGGESTED ANSWERS

Suggested Answers to Question One:

1.1 (2)

$$
\begin{array}{ll}
9 x+4 & =3 x+34 \\
6 x & =30 \\
x & =30 / 6 \\
\underline{x} & =5
\end{array}
$$

(03 marks)

1.2 (3)

Time taken by pipe $\mathrm{A}=180 \mathrm{~min}$.
Time taken by pipe $B=180 \times \frac{1}{6} \mathrm{~min} .=30 \mathrm{~min}$.
(03 marks)
1.3 (1)

$$
\begin{array}{rl}
S=X(1+r)^{n} & x=50000, r=6 \%=0.06, n=10 \\
& S=50000 \times(1.06)^{10} L A\| \| A \\
S=89,542
\end{array}
$$

Total amount in her account is Rs. 89,542
(03 marks)

1.4 (1)

If a student having a mobile phone was selected randomly from this group, the probability that the student also has a computer at home is $\frac{140}{350}=\frac{2}{5}$
(03 marks)

1.5 (2)

$1,4,5,8,10,16,18,18,19,19,19,25$
Median $=\frac{n+1}{2}^{\text {th }}$ term
Median $=\frac{12+1}{2}{ }^{\text {th }}$ term
Median $=6.5^{\text {th }}$ term
Median $=\frac{16+18}{2}$ th term
Median $=17$
(03 marks)
1.6 (3)
$P=\frac{P 1}{P 0} \times 100$
$P=\frac{10}{12} \times 100=\underline{\underline{83 \%}}$
$1.7 \quad$ (4)
$P(A \cap B)=P(A)+P(B)-P(A \cup B)$
$P(A \cap B)=0.30+0.50-0.70$
$P(A \cap B)=0.10$
$P(A \cap B)^{\prime}=1-P(A \cap B)$
$P(A \cap B)^{\prime}=1-0.1$
$\underline{P(A \cap B)^{\prime}}=0.9$
$1.8 \quad$ (3)

$$
\begin{aligned}
\mathrm{X} & =6000, \mathrm{r}=0.075,{ }^{\mathrm{n}}=8 \\
F V & =\frac{x(1+r)\left\lfloor(1+r)^{n}\lfloor 1 \mathrm{l}\rfloor\right.}{r} \\
F V & =\frac{6000 \times 1.075 \times\left\lfloor 1.075^{8}-1\right\rfloor}{0.075} \\
F V & =67,379 \quad \text { This is the most correct value } \\
\underline{F V} & \approx 67,381
\end{aligned}
$$

1.9 (1)

Season	Seasonal Index	Trend	Forecasted Sales
Q1	1.4	12,500	17,500
Q2	1.2	12,000	14,400
Q3	0.6	10,750	6,450
Q4	0.8	9,600	7,680

$$
P V \quad=\quad \frac{X\left(1-(1+r)^{-n}\right)}{r}
$$

$P V=500,000$,

$$
n=3, r=0.075
$$

$$
500,000
$$

This is the most correct value
$\frac{500,000 \times 0.08}{\left(1-1.08^{-4}\right)}(x)$
\boldsymbol{x}

$$
\begin{array}{lc}
= & \frac{X\left(1-1.08^{-3}\right)}{0.08} \\
= & x \\
= & 194,017
\end{array}
$$

1.11
$\mathrm{A} \longrightarrow(2)$
B \qquad (4)
C
(1)
D \qquad (3)
(01 mark each, 04 marks)

1.12

$\frac{1,170}{130} \times 100=$ Rs.900/-
(02 marks)
1.13
$T_{n}=a r^{n-1} \quad a=1, r=3, \quad n=8$
$T_{8}=1 \times 3^{7}$
$T_{8}=\underline{\underline{\mathbf{2}}, \mathbf{1 8 7}}$
1.14

Statement is True
1.15

Statement is False
(01 mark)
(Total 40 marks)

Suggested Answers to Question Two:

Chapter 01 - Fundamental Concepts of Mathematics

(a)

Method 01

$$
\begin{array}{cll}
3-5 x & \leq-12 & \\
3+12 & \leq 5 x & \\
15 & \leq 5 x & \\
\mathbf{3} & \leq \mathbf{x} \text { or } & \mathbf{x} \geq \mathbf{3}
\end{array}
$$

Method 02

$$
\begin{aligned}
3-5 x & \leq-12 \\
-5 x & \leq-12-3 \\
\frac{-5 x}{-5} & \geq \frac{-15}{-5} \\
x & \geq 3
\end{aligned}
$$

(02 marks)

Chapter 01 - Fundamental Concepts of Mathematics

(b)

$$
\begin{aligned}
& 2 a+5 b=13-(1) \\
& 3 a-2 b=10
\end{aligned}
$$

(1) $\times 2 \rightarrow 4 a+10 \mathrm{~b}=26-$ (3)
(2) $\times 5 \rightarrow 15 a-10 \mathrm{~b}=50$-(4)
(4) - (3) $\rightarrow 19 a=50+26$

$$
a=4
$$

(1) $\rightarrow 8+5 b=13$

$$
5 b=5
$$

$$
b=1
$$

(04 marks)
Chapter 04 - Data Presentation and Descriptive Measures
(c)

Product	No. Of Units	Angle
A	180	$\frac{180}{360} \times 360=180^{\circ}$
B	90	$\frac{90}{360} \times 360=90^{\circ}$
C	45	$\frac{45}{360} \times 360=45^{\circ}$
D	45	$\frac{45}{360} \times 360=45^{\circ}$
Total	360	360°

Sales of Products

$\square A-B-C-D$

Suggested Answers to Question Three:
Chapter 03 - Financial Operative Measures for Business
(a)

NOTE; in this question variable cost is negative. It is a mistake.

$$
\begin{array}{ll}
\mathrm{TC} \quad=\mathrm{FC}+\mathrm{VC} & \\
\underline{\mathrm{TC}} \quad=\mathbf{2 0 0} \mathbf{- \mathbf { 6 0 q } - \mathbf { q } ^ { \mathbf { 2 } }} & \\
T R=p \times q & \mathrm{p}=40-\mathrm{q} \\
T R=(40-\mathrm{q}) \times \mathrm{q} & \\
\underline{\mathbf{T R}}=\mathbf{4 0 \mathbf { q } - \mathbf { q } ^ { \mathbf { 2 } }} & \\
\end{array}
$$

(b)

$$
\begin{aligned}
& T P=T R-T C \\
& T P=40 q-q^{2}-\left(200-60 q-q^{2}\right) \\
& \underline{\underline{T P}=\mathbf{1 0 0 q}-\mathbf{2 0 0}}
\end{aligned}
$$

(c)

At the breakeven point, $\quad T R=T C$

$$
\begin{aligned}
40 q-q^{2} & =200-60 q-q 2 \\
100 q & =200 \\
q & =2
\end{aligned}
$$

Monthly break-even quantity is 2,000 units
OR
At zero profit
$0=100 q-200$
$100 q=200$
$\underline{q}=\mathbf{2}$

Suggested Answers to Question Four:

Chapter 05 - Comparing Two Quantitative Variables
(a)
$\sum X=64, \sum Y=59, \sum X Y=552, \sum X^{2}=580, n=8$

\mathbf{x}	\mathbf{y}	$\mathbf{X}^{\mathbf{2}}$	$\mathbf{x y}$
3	3	9	9
6	2	12	36
8	5	40	64
5	7	35	25
9	6	54	81
10	9	90	100
11	12	132	121
12	15	180	144
$\mathbf{6 4}$	$\mathbf{5 9}$	$\mathbf{5 5 2}$	$\mathbf{5 8 0}$

$b=\frac{n \sum X Y-\sum X \cdot \sum Y}{\left(n \sum X^{2}-\left(\sum X\right)^{2}\right)}$
$b=\frac{(8 \times 552)-(64 \times 59)}{(8 \times 580)-\left(64^{2}\right)}$
b $=\frac{4,416-3,776}{4,640-4,096}$
$\mathrm{b}=\frac{640}{544}$
$b=1.1765$

$$
\begin{aligned}
& \mathrm{a}=\bar{Y}-b \bar{X} \\
& \mathrm{a}=\frac{59}{8}-\left[1.1765 \times \frac{64}{8}\right] \\
& \mathrm{a}=7.375-1.176 \times 8 \\
& \mathrm{a}=-2.033
\end{aligned}
$$

Therefore least square regression line is,
$Y=a+b x$
$\underline{\underline{Y}=-2.033+1.176 x}$
(b)
y $=2033+1177_{6}$ RI LANKA
$8=-2.033+1.176 x$
$1.176 x=8+2.033$
$1.176 x=10.033$
$\underline{\underline{X=8.53}}$ or $\underline{\underline{x=9}}$
(Total 10 marks)

Suggested Answers to Question Five:

Chapter 04 - Data Presentation and Descriptive Measures

Time	\boldsymbol{f}	\boldsymbol{x}	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{F x}^{\mathbf{2}}$	$\boldsymbol{f x}$
$10-19$	25	14.5	210.25	$5,256.25$	362.50
$20-29$	18	24.5	600.25	$10,804.50$	441
$30-39$	30	34.5	$1,190.25$	$35,707.50$	1,035
$40-49$	17	44.5	$1,980.25$	$33,664.25$	756.50
$50-59$	6	54.5	$2,970.25$	$17,821.50$	327
$60-69$	4	64.5	$4,160.25$	$16,641.50$	258
	$\mathbf{1 0 0}$		$\mathbf{1 1 , 1 1 1 . 5 0}$	$\mathbf{1 1 9 , 8 9 5}$	$\mathbf{3 , 1 8 0}$

(a)Mode

Mode class is 30-39

$$
\begin{array}{cc}
\mathrm{L}_{1}=29.5, & \Delta_{1}=30-18=12 \quad \mathrm{C}=10 \\
& \Delta_{2}=30-17=13 \\
\mathrm{M}_{\mathrm{o}} & = \\
& \mathrm{L}_{\mathrm{i}}+\left[\frac{\Delta_{1}}{\Delta_{1}+\Delta_{2}}\right] \times \mathrm{C} \\
\mathrm{M}_{\mathrm{o}} & \\
\mathrm{M}_{\mathrm{o}} & = \\
\mathrm{M}_{\mathrm{o}} & = \\
29.5+\left[\frac{12}{12+13}\right] \times 10
\end{array}
$$

(b)

(c)

Standard Deviation $=\sqrt{\frac{\sum f x^{2}}{\Sigma f}-\left[\frac{\Sigma f x}{\Sigma f}\right]^{2}}$
Standard Deviation $=\sqrt{\frac{119895}{100}-\left[\frac{3180}{100}\right]^{2}}$

$$
=\underline{\underline{13.70}}
$$

Suggested Answers to Question Six:

Chapter 02 - Financial Mathematics for Business

(A)
(a)

$$
S=x(1+a r)^{n} \quad X=300,000, \quad r=8 \%=0.08, \quad t=3
$$

$$
\begin{aligned}
& S=300,000(1+3 \times 0.08) \\
& S=300,000+72,000 \\
& \underline{S}=372,000
\end{aligned}
$$

(02 marks)
(b)

$$
S=X(1+r)^{n} \quad \mathrm{X}=300,000, \mathrm{r}=12 / 4 \%=0.03, \mathrm{n}=3 \times 4=12
$$

$S=300000 \times(1+0.03)^{12}$
$S=300,000 \times 1.426$
$\underline{S=427,800}$

Chapter 02-Financial Mathematics for Business
(B)
(a)

	0	1	2	3
Investment	$(500,000)$			
Net Cash Flow	\% - -	250,000	375,000	50,000
	$(500,000)$	250,000	375,000	50,000
10\%	1	0.909	0.826	0.751
DCF	$(500,000)$	227,250	309,750	37,550
NPV = 74,550				

(04 marks)
(b)

Project	NPV
A	74,550
B	80,400

Since the NPV of the project B is higher than project A, Project B is the best project to undertake.

Chapter 06 - Probability and its Applications

(C)
(a)

\mathbf{x}	\mathbf{p}	$\mathbf{x p}$
-1	0.32	-0.32
0	0.01	0.00
1	0.02	0.02
2	0.04	0.08
3	0.40	1.20
4	0.21	0.84
		$\mathbf{1 . 8 2}$

$$
\begin{aligned}
E(X) & =\sum X \times P \\
& =\underline{\underline{1.82}}
\end{aligned}
$$

(b)

X: time taken by a runner to finish a marathon (min)

$$
\mu=240 \quad \sigma=40
$$

$$
Z=\frac{\mathrm{x}-\mu}{\sigma}
$$

$$
Z=\frac{\mathrm{x}-177}{6.4}
$$

$\mathrm{X}=166, \quad Z=\frac{166-177}{6.4}=-1.72$
$\mathrm{X}=185, \quad Z=\frac{185-177}{6.4}=+1.25$

$$
\begin{aligned}
\operatorname{Pr}(166<X<185) & =0.4573+0.3944 \\
& =\underline{\underline{0.8517} \text { or } 85.17 \%}
\end{aligned}
$$

The probability that a randomly chosen adult male has a height between 166 cm and 185 cm is 85.17%.
(D)

Item	$\mathbf{q}_{\mathbf{1}}$	$\mathbf{q}_{\mathbf{1}}$	$\mathbf{q}_{\mathbf{0}}$	$\mathbf{q}_{\mathbf{1}} \mathbf{P}_{\mathbf{1}}$	$\mathbf{q}_{\mathbf{0}} \mathbf{p}_{\mathbf{1}}$
x	100	15	70	$\mathbf{1 , 5 0 0}$	1,050
y	250	40	280	10,000	11,200
Z	130	60	90	7,800	5,400
				$\mathbf{1 9 , 3 0 0}$	$\mathbf{1 7 , 6 5 0}$

$$
\begin{aligned}
\text { Laspeyre's Quantity Index } & =\frac{\sum P 0 q 1}{\sum P 0 q 0} \times 100 \% \\
& =\frac{19,300}{17,650} \times 100 \% \\
& =\mathbf{1 0 9 \%}
\end{aligned}
$$

Notice:

These answers compiled and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.

These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers". The fundamental objective of this publication is to add completeness to its series of study texts, designed especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

© 2021 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

