Association of Accounting Technicians of Sri Lanka

Level I Examination - January 2021

Suggested Answers

(102) BUSINESS MATHEMATICS AND STATISTICS (BMS)

Association of Accounting Technicians of Sri Lanka
No.540,Ven. Muruththettuve Ananda Nahimi Mawatha,
Narahenpita, Colombo 05.
Tel : 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA Level I Examination - January 2021
(102) BUSINESS MATHEMATICS AND STATISTICS SUGGESTED ANSWERS
(Total 40 Marks)
SECTION - A

Suggested Answers to Question One:

1.1 Government deduction $=100-45 \%=55 \%$

Last 3 months bill $=$ Rs. 18,000
Deducted amount $=18,000 \times \frac{55}{100}$
Answer (2) - Rs.9,900/- $=$ Rs.9,900
1.2
$P=\frac{P 1}{P 0} \times 100$
$P=\frac{140}{80} \times 100=\underline{\underline{175 \%}} R\|\mid A\| \| A$
Answer (4) - 175\%
1.3

$$
\begin{aligned}
& r=\frac{\left[\mathrm{n} \sum \mathrm{xy}-\sum \mathrm{x} \cdot \sum \mathrm{y}\right]}{\sqrt{\left\{\left[\mathrm{n} \sum \mathrm{x}^{2}-\left(\sum \mathrm{x}\right)^{2}\right] \times\left[\mathrm{n} \sum \mathrm{y}^{2}-\left(\sum \mathrm{y}\right)^{2}\right]\right\}}} \\
& r=\frac{10 \times 130.64-25 \mathrm{X} 50}{\sqrt{\left(10 \times 65.68-25^{2}\right)\left(10 \times 260.48-50^{2}\right)}} \\
& =\underline{\mathbf{+ 0 . 9 7 7}}
\end{aligned}
$$

Answer (1) - +0. 977
(03 marks)
1.4 The mode is the most commonly occurring value in a distribution.

Mode $=17$
Answer (4)-17
(03 marks)
1.5 $S=x r n \quad S=$ interest, $x=75,000, r=12, n=2$

Interest $=75,000 \times 0.12 \times 2$
Interest = Rs.18,000
Answer (3)-Rs.18,000/-
$1.6 x=6,000, \quad n=5, \quad r=0.05$
$P V=\frac{X\left(1-(1+r)^{-n}\right)}{r}$
$P V=\frac{6,000\left(1-1.05^{-5}\right)}{0.05}$
$P V=R s .25,977 \underline{\underline{\mathbf{2 5}, 980}}$
Answer (4) - Rs.25,980/-
(03 marks)
1.7 $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \cup B)=0.38+0.22-0.06$
$P(A \cup B)=0.54$
Answer (3) - 0.54
(03 marks)
$\left.1.8 S=X(1+r / N)^{n \times N} S \mathrm{R}_{\mathrm{x}=75,000} \mathrm{~A} \mathrm{n}=2\right\} \mathrm{r} \neq 0.12, \quad N=4$
$S=75,000 \times(1+0.12 / 4)^{2 \times 4}$
$S=95,007.76$
$S=\underline{\text { Rs. } 95,008}$
Answer (1) - Rs.95,008/-
(03 marks)
1.9

Seasons (quarter)	Seasonal Index(S)	Trend $\mathbf{(T)}$	Forecasted Sales (T×S)
1st	0.93	7,617	7,084
(03marks) $_{\text {2nd }}$	0.84	7,764	6,522
3rd	1.09	7,912	8,624
4th	1.14	8,060	9,188

Answer (1) - 7,084, 6,522, 8,624, 9,188
(03 marks)
1.10 $P V=400,000, n=5, r=0.12$

$$
\begin{aligned}
& P V=\frac{X\left(1-(1+r)^{-n}\right)}{r} \\
& 400,000=\frac{X\left(1-1.12^{-5}\right)}{0.12} \\
& X=400,000 \times \frac{0.12}{\left(1-1.12^{-5}\right)} \\
& \underline{X=\text { Rs. } 110,964}
\end{aligned}
$$

Answer (3) = Rs. 110,964
1.11
$\mathrm{A} \longrightarrow$
$\mathrm{B} \longrightarrow$
$\mathrm{C} \longrightarrow$
C
$\mathrm{C} \longrightarrow$
1
2
1.12 $S k=\frac{3(\bar{X}-M d)}{S}$
$S k=$ coefficient of skewness
$\bar{X}=$ mean
$\mathrm{Md}=$ median
$S k=\frac{3(710-690)}{\sqrt{144}} \mathrm{~A} \|$ S = standard deviation
$=\frac{60}{12}$
$=\underline{\underline{5}}$
(02 marks)
$1.13 a=4, d=3, n=10$
$T_{n}=a+(n-1) d$

$$
=4+(10-1) \times 3
$$

$$
=4+9 \times 3
$$

$$
=\underline{\underline{31}}
$$

1.14 Statement is "True"
(01 mark)
1.15 Statement is "False"
(01 mark)
(Total 40 marks)

Suggested Answers to Question Two:

Chapter 1 - Fundamental Concepts of Mathematics

(a)

$$
\begin{array}{cl}
3(4 x+2) & =30 \\
12 x+6 & =30 \\
12 x & =24 \\
\boldsymbol{x} & =\mathbf{2} \\
\hline \hline
\end{array}
$$

(b)

$$
\begin{align*}
& 3 x+5 y=-7-(1) \\
& 11 x-8 y=27 \tag{2}
\end{align*}
$$

(1) $\mathrm{x} 8 \rightarrow 24 x+40 \mathrm{y}=-56$ - (3)
(2) $\mathrm{x} 5 \rightarrow 55 \mathrm{x}-40 \mathrm{y}=135$ - (4)
(3) x (4) $\rightarrow 79 x=79$

$$
x=1
$$

Applying $x=1$ to (1)
$3 x+5 y=-7$
$3 \times 1+5 y=-7$
$5 y=-7-3$
$y \quad=\frac{-10}{5}$

$$
\begin{gathered}
y=-2 \\
\underline{x}=1 \quad y=-2
\end{gathered}
$$

(c)

$$
\begin{aligned}
x & =800, \mathrm{r}=5 \%, \mathrm{n}=4, \mathrm{~S}=? \\
S & =x(1+r)^{n} \\
S & =800(1+0.05)^{3} \\
& =800 \times 1.05^{3} \\
& =\text { Rs. } 926.10
\end{aligned}
$$

Suggested Answers to Question Three:

Chapter 3-Financial Operative Measures for Business

(a) (i)
TC $=V C+F C$
TC = Total cost
TC $=2 q^{2}-12 q+12,000$
$\mathrm{VC}=$ Variable cost
FC = Fixed cost

Total Revenue Function (TR) = Demand Function \times Number of Units
$T R=D \times q$
$T R=(q+8) \times q$
$\underline{\underline{T} R=q^{2}+8 q}$
(04 marks)
(ii) Profit Function $=T R-T C$

$$
\begin{aligned}
&=q^{2}+8 q-\left(2 q^{2}-12 q-12 q+12,000\right) \\
&=q^{2}+8 q-2 q^{2}+12 q-12,000 \\
&=-q^{2}+20 q-12,000 \\
& \frac{d p}{d x}=-2 q+20=0 \\
& 2 q=20 \\
& \underline{q}=10 \\
& \frac{D^{2} p}{D X^{2}}=-2<0 \\
& \underline{q}=10 \\
& \text { Answer: }
\end{aligned}
$$

Alternative Answer:

$$
\begin{aligned}
& T R=q^{2}+8 q \\
& M R=2 q+8 \\
& T C \quad=12,000+2 q^{2}-12 q
\end{aligned}
$$

$$
M C=4 q-12
$$

Profit is maximum, When MR = MC

$$
\begin{aligned}
2 q+8 & =4 q-12 \\
X & =10
\end{aligned}
$$

Number of units are 10
(b)
$T R=2 q^{2}+4 q \quad T C=2 q^{2}+2 q+200,000$
At the Break Even Point;

$$
\begin{aligned}
T R & =T C \\
2 q^{2}+4 q & =2 q^{2}+2 q+200,000 \\
2 q^{2}-2 q^{2}+4 q-2 q & =200,000 \\
2 q & =200,000 \\
q & =100,000
\end{aligned}
$$

Break-Even Quantity $=\mathbf{1 0 0 , 0 0 0}$ units

Suggested Answers to Question Four:

Chapter 5 - Comparing Two Quantitative Variables

(a) $\sum \mathrm{X}=420, \sum \mathrm{Y}=360, \sum \mathrm{XY}=27,354, \quad \sum \mathrm{X}^{2}=33,408, \mathrm{n}=6$

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x y}$
38	42	1,444	1,596
42	44	1,764	1,848
60	52	3,600	3,120
80	71	6,400	5,680
90	75	8,100	6,750
110	76	12,100	8,360
$\mathbf{4 2 0}$	$\mathbf{3 6 0}$	$\mathbf{3 3 , 4 0 8}$	$\mathbf{2 7 , 3 5 4}$

$\mathrm{b}=\frac{\mathrm{n} \sum \mathrm{XY}-\sum \mathrm{X} \cdot \sum \mathrm{Y}}{\left(\mathrm{n} \sum \mathrm{X}^{2}-\left(\sum \mathrm{X}\right)^{2}\right)}$
$\mathrm{b}=\frac{(6 \times 27,354)-(420 \times 360)}{(6 \times 33,408)-\left(420^{2}\right)}$
b $=\frac{164,124-151,200}{200,448-176,400}$
$b=\frac{12,924}{24,048}$
$b=0.54$
$a=\bar{Y}-b \bar{X}$
$a=\frac{360}{6}-\left[0.5374 \times \frac{420}{6}\right]$
$a=60-37.56$
$a=22.38$
Therefore least square regression line is,
$Y=a+b x$
$\underline{Y}=22.38+0.54 x$
(07 marks)
(b) Healthcare expense is Rs.75,000/-

Then substitute $\mathrm{x}=75$

$$
\begin{aligned}
& Y=22.38+0.54 x \\
& Y=22.38+0.54 \times 75 \\
& Y=62.88
\end{aligned}
$$

Average life expectancy $=\underline{\mathbf{6 3} \text { years }}$

Suggested Answers to Question Five:

Chapter 4 - Data Presentation and Descriptive Measures

(a) Median
$n=40$
$\frac{n}{2}=20$,
$\mathrm{L}_{1}=19.5, \mathrm{Fc}=5, \mathrm{fm}=15$,
Median Class = 29.5-19.5
$\equiv 10$
$\operatorname{Md}=\mathrm{L}+\frac{\left(\frac{n}{2}-F c\right)}{f m} \times c$
$\operatorname{Md}=19.5+\frac{(20-5)}{15} \times 10$
$M d=29.5$

Median of the monthly salary = Rs.29,500
(b) Mean

Monthly Salary (Rs.'000)	Mid Point \boldsymbol{x}	No. of Employees	$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{f} \boldsymbol{x}^{\mathbf{2}}$
$10-19$	14.5	5	72.5	$1,051.25$
$20-29$	24.5	15	367.5	$9,003.75$
$30-39$	34.5	8	276	9,522
$40-49$	44.5	4	178	7,921
$50-59$	54.5	5	272.5	$14,851.25$
$60-69$	64.5	3	193.5	$12,480.75$

Mean $=\frac{\sum f x}{\sum f}=\frac{1360}{40}=\underline{\underline{34}}$
(03 marks)
(c) Standard Deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left[\frac{\sum f x}{\Sigma f}\right]^{2}}$

OR

$$
\begin{aligned}
\text { Standard Deviation } & =\sqrt{\frac{54,830}{40}-\left[\frac{1,360}{40}\right]^{2}} \\
& =\sqrt{1,370.75-34^{2}} \\
& =\sqrt{1,370.75-1,156} \\
& =\sqrt{214.75} \\
& =1 \mathbf{1 4 . 6 5}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{\sum f x^{2}-x}{\sum f}-x} \\
& =\sqrt{\frac{54,830}{40}-34^{2}} \\
& =\sqrt{1,370.75-1,156} \\
& =\sqrt{214.75} \\
& \equiv 14.65
\end{aligned}
$$

Suggested Answers to Question Six:
(A)

Chapter 2 - Financial Mathematics for Business

(a)

Year	Project A	Project B	DF @10\%	Project A PV	Project B PV
$\mathbf{0}$	$(160,000)$	$(130,000)$	1	$(160,000)$	$(130,000)$
$\mathbf{1}$	20,000	45,000	0.909	18,180	40,905
$\mathbf{2}$	50,000	65,000	0.826	41,300	53,690
$\mathbf{3}$	90,000	50,000	0.751	67,590	37,550
				$\mathbf{(3 2 , 9 3 0)}$	$\mathbf{2 , 1 4 5}$

$$
\begin{aligned}
\mathrm{NPV}_{B} & =\text { PV-I } \\
& =-130,000+132,145 \\
\underline{N P V} & =+2,145
\end{aligned}
$$

(b) NPV is positive for project B. Project A has a negative NPV.

Therefore, company should invest in project B.
(B)

Chapter 6 - Probability and its Applications

\boldsymbol{X}	$\boldsymbol{P}(\boldsymbol{X})$	$\boldsymbol{X P}(\boldsymbol{x})$
2	0.14	0.28
3	0.13	0.39
4	0.23	0.92
5	0.24	1.20
6	0.26	1.56
	$\mathbf{1 . 0 0}$	4.35

$$
E[X]=\sum X \times P(x)=\underline{\mathbf{4 . 3 5}}
$$

$$
\begin{aligned}
& \mathrm{NPV}_{\mathrm{A}}=\mathrm{PV}-\mathrm{I} \\
& =-160,000+127,070 \\
& \underline{N P V=-32,930} \\
& \text { So, NPV of Project } A=-32,930 \\
& \text { NPV of Project B }=\underline{\underline{+2,145}} \\
& \text { OR } \\
& \text { Project A } \\
& N P V=\frac{20,000}{1.1^{1}}+\frac{50,000}{1.1^{2}}+\frac{90,000}{1.1^{3}}-160,000 \\
& \begin{aligned}
N P V= & =127,122.46-160,000 _A \| A \\
& \underline{\underline{=-32,877.54}}
\end{aligned} \\
& \text { Project B } \\
& N P V=\frac{45,000}{1.1^{1}}+\frac{65,000}{1.1^{2}}+\frac{50,000}{1.1^{3}}-130,000 \\
& N P V=132,193.84-130,000 \\
& \text { = 2,193.84 }
\end{aligned}
$$

(C)

Chapter 6 - Probability and its Applications

(a)

ε - All the people in a survey
C - People who are having a computer
S-People who are having smart phone
(b)

$$
P\left(\frac{S}{C}\right)=\frac{P(S \cap C)}{P C}=\frac{\mathbf{1 7}}{\mathbf{5 4}}
$$

(D)

Chapter 6-Probability and its Applications
X : time taken to service a car (hours)
$\mu=1.35 \quad \sigma=0.35$
$z=\frac{(X-\mu)}{\sigma}$
$z=\frac{x-1.35}{0.35}$

$Z=\frac{1-1.35}{0.35}$
$Z=-1.0$
Probability $\quad=(X<1.0)$
$=0.5-0.3413$
$=0.1587$ or $\mathbf{1 5 . 8 7 \%}$
The probability that the car servicing center takes less than one hour to service a car is 0.1587 or 15.87\%.

Notice:

These answers compiled and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.

These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers". The fundamental objective of this publication is to add completeness to its series of study texts, designed especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

© 2021 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

