Association of Accounting Technicians of Sri Lanka

July 2020 Examination - Level I

Suggested Answers

(102)

(102) BUSINESS MATHEMATICS AND STATISTICS

Association of Accounting Technicians of Sri Lanka
No.540,Ven. Muruththettuve Ananda Nahimi Mawatha,
Narahenpita, Colombo 05.
Tel : 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA
Level I Examination - July 2020
(102) BUSINESS MATHEMATICS AND STATISTICS

SUGGESTED ANSWERS

(Total 40 Marks)
SECTION - A

Suggested Answers to Question One:

1.1

Other ethnic groups	$=100 \%-(70 \%+22 \%)=8 \%$
Total population $X-8 \%$	$=3,200$
Number of Sinhalese in the town	$=3,200 \times \frac{70}{8}$
Number of Sinhalese in the town	$=\underline{\mathbf{2 8 , 0 0 0}}$

Answer (2) - 28,000
(03 marks)
1.2
$8 y+8=3(2 y+8)$
$8 y+8=6 y+24$
$2 \mathrm{y}=16$
$\mathrm{Y}=\mathbf{\underline { 8 }}$
5
RI LANKA
Answer (4)-8
(03 marks)
$\begin{aligned} 1.3 \quad & =x(1+\mathrm{nr}) \\ \mathrm{S} & =6,000+(1+(3 \times 0.08)) \\ \mathrm{S} & =6,000(1.24) \\ \mathrm{S} & =\underline{\underline{\mathbf{4} 40}}\end{aligned}$
Answer (3) - Rs. 7,440
(03 marks)
$1.4 Q=\frac{q 1}{q 0} \times 100$
$Q=\frac{34}{51} \times 100$
$=\underline{\underline{67 \%}}$
Answer (1) - 67\%
$1.5 \quad \bar{X} \quad=\frac{\sum x}{n}$

$$
\begin{array}{ll}
83 & =\frac{(75+68+86+95+90)+x}{6} \\
83 \times 6 & =414+x \\
498-414 & =x
\end{array}
$$

$$
x \quad=84
$$

Answer (3)-84
(03 marks)
$1.6 \mathrm{r}=$

$$
\frac{\left[n \sum X Y-\sum X \cdot \sum Y\right]}{\sqrt{\left\{\left[n \sum X^{2}-(\Sigma X)^{2}\right]\left[n \sum Y^{2}-(\Sigma Y)^{2}\right]\right\}}}
$$

$r=$
$\frac{(7 \times 310.5)-(70 \times 30.6)}{\sqrt{\left(7 \times 952-70^{2}\right)\left(7 \times 134.13-30.6^{2}\right)}}$
$r=$

$$
\frac{2,173.5-2,142}{\sqrt{(6,664-4,900)(938.91-936.36)}}
$$

$=$
31.5
$\sqrt{(6,664-4,900)(938.91-936.36)}$
$=$
$=$

Answer (4) - 0.4697
(03 marks)
1.7

The probability that a randomly chosen person visited Europe given that he had visited Asia would be
$\frac{14}{26}$
Answer (3) $\quad \frac{14}{26}$

```
1.8 A = SR (R-1)
    A = 年 =0,000\times1.\mp@subsup{1}{}{4}(1.1-1)
    A= 500,000\times1.4641\times0.1
                1.4641-1
\(\mathbf{A}=\frac{73,205}{0.4641}\)
A = 157,735
```


Alternative Method

```
\(\mathrm{A}=\frac{500,000}{\text { Cum DCF 10\% }}\)
\(\mathrm{A}=\frac{500,000}{3.1698}\)
\(\mathrm{A}=1 \quad \underline{\underline{157,735}}\)
Answer (2) Rs.157,735/-
\(1.9 \quad S=X(1+r / N)^{n \times N}\)
\(63,339=X \times(1+0.12 / 4)^{2 \times 4}\)
\(X \quad=\frac{63339}{1.03^{8}}\)
\[
=\underline{\underline{50,000}}
\]
\(r=\) Interest Rate
\(X=\) Present Value
\(N=\) No of periods in an year
\(N=\) No of Years
Or
\(S=X\{1+r\}^{n}\)
\(r=\) interest rate per quarter
\(n=\) no of quarters
\(S=X\{1+r\}^{n}\)
\(63,339=X(1+0.03)^{8}\)
\(x=\frac{63,339}{1.03^{8}}\)
\(=50,000\)
```

Answer (2) = Rs.50,000/-
$1.10 \quad T=198 x+841$
Value of x in 2020 is 7
$T=(198 \times 7)+84$
$\underline{T=2,227}$
Answer (3) = Rs.2,227/-
(03 marks)
1.11
$\mathrm{A} \longrightarrow$
$\mathrm{B} \longrightarrow$
$\mathrm{C} \longrightarrow$
$\mathrm{C} \longrightarrow$
$\mathrm{D} \longrightarrow$
1.12

Savings schemes	No. of customers	Percentage (\%)	No. of degrees
SavingsAccounts :	30	$\begin{aligned} & \frac{30}{72} \times 100 \\ & =41.6 \% \end{aligned}$	$\frac{30}{72} \times 360=150^{0}$
CurrentAccounts :	18	$\begin{aligned} & \frac{18}{72} \times 100 \\ & =\mathbf{2 5} \% \end{aligned}$	$\frac{18}{72} \times 360=90^{0}$
FixedDeposits	24	$\frac{24}{72} \times 100$	$\frac{24}{72} \times 360=120^{0}$
	\bigcirc	$\Lambda=33.4 \%$	
Total	-72	- 100\%	360

$$
\begin{aligned}
& \text { 1.13 } P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& 0.72=0.60+0.30-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=0.9-0.72 \\
& \underline{P(A \cap B)}=\mathbf{0 . 1 8}
\end{aligned}
$$

1.14Statement is "True" (01 marks)
1.15Statement is "False"

End of Section A

Suggested Answers to Question Two:
(a)

Chapter 1-Fundamental Concepts of Mathematics

$$
\begin{aligned}
& 3 X+2 Y=17 \rightarrow(1) \\
& 2 X+5 Y=26 \rightarrow(2)
\end{aligned}
$$

(1) $X \quad 2 \Rightarrow 6 X+4 Y=34 \rightarrow$ (3)
(2) $\mathrm{X} \quad 3 \Rightarrow 6 \mathrm{X}+15 \mathrm{Y}=78 \rightarrow$ (4)
$\begin{array}{rlrlr}(4)-(3) & \Rightarrow & 11 Y & = & 44 \\ & \Rightarrow & Y & = & 4\end{array}$

$$
\underline{\underline{\gamma}=4}
$$

(1) $\Rightarrow 3 X+\left(2^{*} 4\right)=17$
$3 \mathrm{X}=17-8$
$3 \mathrm{X}=9$
$\underline{\underline{X=3}}$
(b)

Chapter 1-Fundamental Concepts of Mathematics

If cost is Rs.100/-

Cost + Profit	$=$	Sales Price
100		120
$?$	$\underline{48,000}$	
Production cost of the table	$=\frac{100}{120} \times 48,000$	
	$=$	Rs. $\mathbf{4 0 , 0 0 0}$

(c)

Chapter 1-Fundamental Concepts of Mathematics

$$
3 x+2 y \leq 12 \rightarrow 1 \quad x+2 y \leq 6 \quad \rightarrow \text { (2) }
$$

If $X=0 \quad$,	$y=6(0,6)$	If $x=0$,	$y=3(0,3)$
If $y=0$,	$x=4(4,0)$	If $y=0$,	$x=6(6,0)$

(03 marks)
(01 mark)
(Total 10 marks)

Suggested Answers to Question Three:

Chapter 3-Financial Operative Measures for Business

(a)
$\mathrm{TR}=\mathrm{p} \times \mathrm{q} \quad$ (Demand ${ }^{*}$ Quantity) $\quad \mathrm{p}=1000-2 \mathrm{q}$
$T R=(1000-2 q) \times q$
$T R=1000 q-2 q^{2}$
TC =VC+FC (Variable Cost + Fixed Cost)
TC $=\underline{3 q^{2}+100 q+800}$
(b)

Profit Function (TP) $=$ TR - TC
TP = TR - TC
$T P=\left(1000 q-2 q^{2}\right)-\left(3 q^{2}+100 q+800\right)$
$T P=1000 q-2 q^{2}-3 q^{2}-100 q-800$
$\underline{T P=900 q-5 q^{2}-800}$
or
$\equiv 180 q-q^{2}-160$
(c)
$D(T p)=180-2 q$ or $900-10 q$
Dq
$\frac{\mathrm{D}^{2}(\mathrm{Tp})}{\mathrm{Dq}}=-2<0$
Therefore number of units at profit maximized $\Rightarrow>180-2 q=0$

$$
2 q=180
$$

$$
\mathrm{Q}=90
$$

Alternative Calculation Method

$$
\begin{aligned}
& T R=1000 q-2 q^{2} \\
& \mathbf{M R}=\mathbf{1 0 0 0}-\mathbf{4 q} \\
& T C==800+100 q+3 q^{2} \\
& \mathbf{M C}=\mathbf{1 0 0}+\mathbf{6 q}
\end{aligned}
$$

Profit is maximized, When, $\mathbf{M R}=\mathbf{M C}$
$1000-4 q=100+6 q$

$$
\underline{\underline{x}=90}
$$

Suggested Answers to Question Four:

Chapter 5-Comparing two Quantitative Variables

(a)

\mathbf{x}	\mathbf{y}	$\mathbf{x}^{\mathbf{2}}$	$\mathbf{x y}$
44	550	1,936	24,200
29	480	841	13,920
74	630	5,476	46,620
12	230	144	2,760
9	240	81	2,160
50	610	2,500	30,500
$\mathbf{2 1 8}$	$\mathbf{2 , 7 4 0}$	$\mathbf{1 0 , 9 7 8}$	$\mathbf{1 2 0 , 1 6 0}$

$b=\frac{n \sum x y-\sum x \cdot \sum y}{\left(n \sum x^{2}-(\Sigma x)^{2}\right)}$
$b=\frac{(6 \times 120,160)-(218 \times 2,740)}{(6 \times 10,978)-(218)^{2}}$
$b=\frac{720,960-597,320}{65,868-47,524}$
$b=\frac{123,640}{18,344}$
b $=\quad \underline{6.74}$
a $\quad=\bar{Y}-b \bar{X}$
a $=\frac{2,740}{6}-\left[6.7401 \times \frac{218}{6}\right]$
$\mathrm{a}=$ 456.67-244.89
a $=\underline{\underline{211.78}}$

Therefore least square regression line is;
$Y=a+b x$
$Y=\underline{\underline{211.78+6.74 x}}$
(a) Advertising expense is Rs.40,000/-
$Y=211.78+6.74 x$
Then, Substituting $x=40$
$Y=211.78+6.74$ (40)
$=481.38$
$Y=481,380$

Expected Sales Value $=\underline{\underline{\text { Rs.481,380/- }}}$
(03 marks) (Total 10 marks)

Suggested Answers to Question Five:

Chapter 4- Data Presentation and Descriptive Measures

Waiting time (minutes)	Mid- Point (\boldsymbol{x})	Frequency (\boldsymbol{f})	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{f}(\boldsymbol{x})^{2}$				
$10-19$	14.5	15	217.5	$3,153.75$				
$20-29$	24.5	9	220.5	$5,402.25$				
$30-39$	34.5	30	1,035	$35,707.5$				
$40-49$	44.5	14	623	$27,723.5$				
$50-59$	54.5	12	654	35,643				
						$\Sigma f=80$	$\Sigma f x=\mathbf{2 , 7 5 0}$	$\Sigma f x^{\mathbf{2}=107,630}$

Note: These values can be obtained by using calculator.

$$
\text { (a) } \quad \begin{aligned}
\text { Mean } & =\frac{\Sigma f(x)}{\Sigma f} \\
& =\frac{2,750}{80} \\
& =34.375
\end{aligned}
$$

(b) Standard Deviation $\quad=\sqrt{\frac{\sum f x^{2}}{\Sigma f}-\left[x[\bar{x}]^{2}\right.}$

$$
\begin{aligned}
& =\sqrt{\frac{107,630}{80}-\left(34.375^{2}\right)} \\
& =\sqrt{1,345.375-1,181.64} \\
& =\sqrt{163.73} \\
& =\underline{\underline{12.79}}
\end{aligned}
$$

(04 marks)
(b) Coefficient of Variation (V)

SECTION - B

Suggested Answers to Question Six:

(A)

Chapter 2- Financial Mathematics for Business

(a) (i)

	I	CF	DF @15\%	PV
$\mathbf{0}$	$(150,000)$	-	1	$(150,000)$
$\mathbf{1}$	-	70,000	0.870	60,900
$\mathbf{2}$	-	85,000	0.756	64,260
$\mathbf{3}$	-	50,000	0.658	32,900
$\mathbf{4}$				$\mathbf{N P V}=\mathbf{8 , 0 6 0}$

NPV $=\underline{\underline{8,060}}$
(04 marks)
(b) NPV of the project is positive.

Therefore company should invest in the said project.
(02 marks)

(B)

Chapter 7- Index numbers and forecasting

	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{q}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{0}} \mathbf{q}_{\mathbf{0}}$	$\mathbf{P}_{\mathbf{1}} \mathbf{q}_{\mathbf{0}}$
\mathbf{X}	20	250	30	5,000	$\mathbf{7 , 5 0 0}$
\mathbf{Y}	18	130	25	2,340	3,250
\mathbf{Z}	40	180	50	7,200	9,000
				$\mathbf{1 4 , 5 4 0}$	$\mathbf{1 9 , 7 5 0}$

Laspeyre's Price Index $\left(L P_{1 / 0}\right)=\frac{\sum\left(p_{1} \times q_{0}\right)}{\sum\left(p_{0} \times q_{0}\right)} \times 100$
$=\frac{19,750}{14,540} \times 100 \%$
$=135.83 \%$
(C)

Chapter 6- Probability and its Applications

(a)
(i)

(ii)

B - Being a boy $\quad P$ - Pass the exam
G - Being a girl
F - Fail the exam

$$
100
$$

Probability

Probability of a student passing that examination is 35\%
(iii) Probability of a selected student
who is a boy, fails the examination. $=\frac{30}{45}$
or
$=\quad \underline{2}$
3
(b)
$X=$ time taken by a runner to finish a marathon (min)
$\mu=240 \quad \sigma=40$
$Z=\frac{x-\mu}{\sigma}$
$Z=\frac{X-240}{40}$
$Z=\frac{300-240}{40}$
$=\quad \underline{60}$
$Z=\underline{\underline{+1.5}}$

The probability that the runner takes below 300 minutes to finish the marathon is 93.32\%
(03 marks)
(Total 20 marks)

Notice:

These answers complied and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.

These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers". The fundamental objective of this publication is to add completeness to its series of study texts, designs especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

© 2020 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

