

Association of Accounting Technicians of Sri Lanka

AA1 Examination - January 2020

Suggested Answers
Subject No : AA12

QUANTITATIVE METHODS FOR BUSINESS (QMB)

Association of Accounting Technicians of Sri Lanka
No. 540, Ven. Muruththettuve Ananda Nahimi Mawatha, Narahenpita, Colombo 05.

$$
\text { Tel : 011-2-559 } 669
$$

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA EDUCATION AND TRAINING DIVISION

AA1 Examination - January 2020

(AA12) Quantitative Methods for Business SUGGESTED ANSWERS

SECTION - A

Fifteen (15) compulsory questions
(Total 40 marks)
Suggested Answers to Question One:
1.1 Answer 02
$3 \mathrm{x}+3=2(\mathrm{x}+2)$
$3 x+3=2 x+4$
$\mathrm{x}=1$
(03 marks)
1.2 Answer 01
$\mathrm{I}=$ prt $\quad \mathrm{P}=25000 \quad \mathrm{r}=8.0 \%=0.08 \quad \mathrm{t}=5$

I $\quad=25000 \times 0.08 \times 5$
I $=\mathbf{1 0 , 0 0 0}$
(03 marks)
1.3 Answer 04

$$
\begin{aligned}
\mathrm{TR} & =33 \mathrm{q}-4 \mathrm{q} 2 \\
\mathrm{MR} & =33-8 q
\end{aligned}
$$

1.4 Answer 03

$$
\begin{aligned}
\mathrm{Q} & =(9,500 / 6,000) \times 100 \\
& =(\mathrm{q} 1 / \mathrm{q} 0) \times 100 \\
& =\mathbf{1 5 8 \%}
\end{aligned}
$$

(03 marks)
1.5 Answer 02

NPV = Present value of cash inflow - Present value of cash outflow

$$
\begin{aligned}
& P V=\frac{X}{(1+r)^{n}} \quad r=0.1 \quad P V=\frac{X}{1.1^{n}} \\
& \mathrm{NPV}=\frac{2,500,000}{1.1^{1}}+\frac{2,500,000}{1.1^{2}}+\frac{2,500,000}{1.1^{3}}-5000,000 \\
& \mathrm{NPV}=6,217,130-5,000,000 \\
& =\underline{1,217130 \approx 1,215,000}
\end{aligned}
$$

(03 marks)
1.6 Answer 01
$\sum P=\frac{\sum P 1}{\sum P 0} \times 100$
$\sum P=\frac{1370}{1240} \times 100$
$\sum P=\underline{\underline{110 \%}}$
(03 marks)
1.7 Answer 03
$\mathrm{T} \quad=210+3 \mathrm{x}$
X value for year 2019 is 7

$$
\begin{aligned}
\mathrm{T} & =210+3 \times 7 \\
& =231
\end{aligned}
$$

(03 marks)
1.8 Answer 04
$\mathrm{P}($ MUY $) \quad=0.11+0.12+0.33$ $=0.56$
(03 marks)
1.9 Answer 02

$$
\begin{aligned}
\mathrm{E}(\mathrm{X}) & =\sum \mathrm{X} \times \mathrm{P} \\
& =1000 \times 0.15+1100 \times 0.20+1250 \times 0.30+1320 \times 0.25+1400 \times 0.10 \\
& =\text { Rs. } \mathbf{1 , 2 1 5}
\end{aligned}
$$

1.10 Answer 03

$$
\begin{aligned}
& \quad \mathbf{n} \\
\mathbf{S}= & \mathbf{X}(\mathbf{1}+\mathbf{r}) \\
S & =200000 \times(1+0.12)^{3} \\
S & =280,985.60 \\
& \approx \underline{\underline{\mathbf{2 8 0}, \mathbf{9 8 6}}}
\end{aligned}
$$

1.11 Purchase Price $=(100 / 125) \times 145,000=$ Rs. 116,000/-

Method 1

We assumed

> Rs. X invested at 6% and
> Rs. Y invested at 8%.

Then,

$$
\begin{array}{lr}
\mathrm{X}+\mathrm{Y} & =500000 \\
\frac{6}{100} \times X+\frac{8}{100} \times Y=38,000 \longrightarrow & 1 \\
\end{array}
$$

The student can get the answer using calculator which will be as below.

$$
\begin{array}{ll}
\mathrm{X} & =100,000 \\
\mathrm{Y} & =400,000
\end{array}
$$

Answer, Rs. 100,000 invested at 6%, and

Rs. 400,000 invested at 8%.

Method 2

We assumed,
Rs. X invested at 6%, and

Rs. $(500000-X)$ invested at 8%.
$\left(X \times 1 \times \frac{8}{100}\right)+\left((500000-X) \times 1 \times \frac{6}{100}\right)=38,000$
$0.08 X+0.06(500000-X)=38,000$
$0.02 X+30,000-0.06 X \quad=38,000$
$0.02 \mathrm{X}=8,000$
$X=400,000$
Therefore answer is, Rs. 100,000 invested at 6%, and

Rs. 400,000 invested at 8%

(02 marks)

1.13 Reasons for sampling

1. Population will be very large.
2. Population will be reliable.
3. Sampling is usually less expensive than considering population.
4. By sampling you get results quicker than considering population(Less time consuming)
(02 marks)
1.14 False
(02 marks)
1.15 True
(02 marks)
(Total 40 marks)

End of Section A

Four (04) compulsory questions.
(Total 40 marks)

Suggested Answers to Question Two:

(a)

Chapter 02-Part I-Quantitative Finance-Interest
i)

$$
\begin{aligned}
& X=750,000, r=\mathbf{1 2 \%}=\mathbf{0 . 1 2}, \mathbf{t}=\mathbf{2}, \mathbf{n}=\mathbf{4} \\
& S=X(1+r)^{n} \\
& S=X\left(1+\frac{r}{n}\right)^{n t} \\
& S=750,000\left(1+\frac{0.12}{4}\right)^{2 \times 4} \\
& S=750,000 \times(1.03)^{8} \\
& S=750,000 \times 1.267 \\
& \underline{S}=\mathbf{9 5 0 , 2 5 0} /-
\end{aligned}
$$

Total amount in his account at the end of 3 years is Rs. 950,250/-
(04 marks)
ii) Total Interest = Rs. 950,250-750,000

$$
=\text { Rs. 200,250/- }
$$

(02 marks)
(b) $\mathrm{A}=$

$=$	$\underline{S R}^{\underline{n}} \mathrm{x}(\mathrm{R}-1)$
Rn^{-1}	
$=$	$\underline{500,000 *(1+0.14)} \underline{\underline{5}}$ * $1+0.14-1)$
$(1+0.14)^{5}-1$	
$=$	$\underline{500,000(1.14)} \underline{\underline{5} * 0.14}$
$(1.14)^{5}-1$	
$=$	$\underline{500,000 * 1.925 * 0.14}$
1.925-1	
134,750	
0.925	
$=$	Rs. $145,675.67$ < $=$ Installment

(04 marks)
(Total 10 marks)

Suggested Answers to Question Three:

(a)

Chapter 03-Financial Operative Measures

Method I

$$
\begin{aligned}
& \text { Profit Function }=\text { TR - TC } \\
& P=74 x+2 x^{2}-\left(3 x^{2}-86 x-250\right) \\
& =\quad 74 \mathrm{x}+2 \mathrm{x}^{2}-3 \mathrm{x}^{2}+86 \mathrm{x}-250 \\
& =\quad-x^{2}+160 x-250 \\
& \text { If profit is maximized } \quad=\frac{\mathrm{d}^{2} \mathrm{p}}{\mathrm{Dx}^{2}}<0 \\
& \text { So, } \begin{aligned}
\mathrm{dp} & =\frac{-2 \mathrm{x}}{\mathrm{Dx}}+160 \\
2 \mathrm{x} & =160 \\
\mathbf{x} & =\mathbf{8 0}
\end{aligned} \\
& \text { So } \quad=>\text { Number of unit at which the profit is maximized, } \\
& \Rightarrow \mathrm{x}=80 \text { units }
\end{aligned}
$$

Method II
$\mathrm{MR}=74+4 \mathrm{x}$
$\mathrm{MC}=6 \mathrm{x}-86$
$74+4 \mathrm{x}=6 \mathrm{x}-86$
$160=2 \mathrm{x}$
$80=\mathbf{x}$
(04 marks)
(b) (i) \quad Total Cost $(\mathrm{TC})=$ Variable Cost + Fixed Cost

$$
\begin{aligned}
& =\mathbf{7 5} x+\mathbf{2 5 0}, \mathbf{1 2 5} \\
\text { Profit Function } & =T R-T C \\
& =650 x-(75 x+250,125) \\
& =650 x-75 x-250,125 \\
& =\mathbf{5 7 5 x}-\mathbf{2 5 0 , 1 2 5}
\end{aligned}
$$

(03 marks)
(ii) Method I

At the break -even point Profit Function

$$
\begin{aligned}
575 \mathrm{x}-250,125 & =0 \\
575 \mathrm{x} & =250,125 \\
\mathbf{x} & =\mathbf{4 3 5}
\end{aligned}
$$

Method II

$$
\begin{aligned}
& \mathrm{TR}=\mathrm{TC} \\
& 650 \mathrm{x}
\end{aligned}=75 \mathrm{x}+250,125 \mathrm{x}=\mathrm{x}=250,125 \mathrm{x}=2
$$

(03 marks)
(Total 10 marks)

Suggested Answers to Question Four:

(a)

Chapter 04-Numerical Descriptive Measures

Method I

Monthly Salary (Rs.'000)	Mid-Point(x)	No of employees (\boldsymbol{f})	$\boldsymbol{f}(\mathbf{x})$	$\boldsymbol{f}(\mathbf{x})^{\mathbf{2}}$
$10-19$	14.5	6	87	$1,261.50$
$20-29$	24.5	20	490	$12,005.00$
$30-39$	34.5	8	276	$9,522.00$
$40-49$	44.5	6	267	$11,881.50$
$50-59$	54.5	6	327	$17,821.50$
$60-69$	64.5	4	258	$16,641.00$
		$\sum \mathbf{f}=\mathbf{5 0}$	$\sum \mathbf{f} \mathbf{x}=\mathbf{1 , 7 0 5}$	$\sum \boldsymbol{f} \mathbf{~}^{\mathbf{2}=\mathbf{6 9}, \mathbf{1 3 2}} \mathbf{}$

(a) Mean $=\frac{\sum \boldsymbol{f} \mathbf{x}}{\sum \boldsymbol{f}}$

$$
\begin{aligned}
& =\underline{1,705} \\
& =\mathbf{3 4 . 1}
\end{aligned}
$$

(b) Standard Deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\bar{x}^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{69,132.5}{50}-(34.1)^{2}} \\
& =\sqrt{1,382.65-1,162.81} \\
& =\sqrt{219.84} \\
& =\mathbf{1 4 . 8 3}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { Coefficient of Variation (V) } & =\frac{\text { Standard Deviation }}{\text { Mean }} \mathbf{1 0 0 \%} \\
& =\frac{s}{\bar{X}} \times 100 \\
& =\frac{14.83}{34.1} \times 100 \\
& =\underline{\underline{\mathbf{4 3 . 4 9 \%}}}
\end{aligned}
$$

Method II

Monthly Salary (Rs.'000)	Mid-Point(x)	No of employees(f)	$f(\mathbf{x})$	$f(\mathbf{x}) 2$
10-19	15	06	90	1,350
20-29	25	20	500	12,500
30-39	35	08	280	9,800
40-49	45	06	270	12,150
50-59	55	06	330	18,150
60-69	65	04	260	16,900
		$\Sigma \boldsymbol{f}=50$	$\sum \mathrm{fx}=1,730$	$\sum f \mathrm{x}^{2}=70,850$

(a) \quad Mean $=\frac{\sum \mathbf{f} \mathbf{X}}{\sum \mathbf{f}}$
$=1,730$
50
$=\underline{\underline{34.6}}$
(03 marks)
(b) Standard Deviation $=\sqrt{\frac{\sum f x^{2}}{\sum f}-\bar{x}^{2}}$

$$
=\sqrt{\frac{70,850}{50}-(34.6)^{2}}
$$

$$
=14.82
$$

(04 marks)
(c) Coefficient of Variation (V) = Standard Deviation * $\mathbf{1 0 0 \%}$

$$
\begin{aligned}
& =\frac{S}{\bar{X}} \times 100 \\
& =\frac{14.82}{34.6} \times 100 \\
& =\underline{\mathbf{4 2 . 8 3 \%}}
\end{aligned}
$$

(03 marks)
(Total 10 marks)

Suggested Answers to Question Five:

(a)

Chapter 5-Comparing Two Quantitative Variables

$\sum X=305, \quad \sum Y=403, \quad \sum X Y=21,692, \quad \sum X^{2}=16,477, \quad n=6$
(b)

\mathbf{x}	\mathbf{y}	$\mathbf{x y}$	$\mathbf{X}^{\mathbf{2}}$
42	56	2,352	1,764
51	68	3,468	2,601
32	43	1,376	1,024
60	76	4,560	3,600
48	66	3,168	2,304
72	94	6,768	5,184
$\mathbf{3 0 5}$	$\mathbf{4 0 3}$	$\mathbf{2 1 , 6 9 2}$	$\mathbf{1 6 , 4 7 7}$

$\mathbf{b}=\frac{\mathbf{n} \sum \mathbf{X Y}-\sum \mathbf{X} \sum \mathbf{Y}}{\left(\mathbf{X}^{2}-\left(\sum \mathbf{X}\right)^{2}\right.}$
$n \sum X^{2}-\left(\sum X\right)^{2}$
$\mathrm{b}=(6 \times 21,692)-(305 \times 403)$
$(6 \times 16,477)-(305)^{2}$
$\mathrm{b}=\quad 130,152-122,915$
98,862-93,025
$\mathrm{b}=\underline{7,237}$
5,837
$\underline{b}=1.24$

$$
\begin{array}{ll}
\mathrm{a} & =\bar{Y}-b \bar{X} \\
\mathrm{a} & =\frac{403}{6}-\left(1.24 \times \frac{305}{6}\right) \\
\mathrm{a} & =67.2-(1.24 * 50.83) \\
\underline{\mathbf{a}}=4.17
\end{array}
$$

Regression line
$Y=a+b x$
$\underline{\underline{Y}=4.17+1.24 x}$
(05 marks)
(c) Substitute $\mathrm{x}=55$

$$
\begin{aligned}
& \mathrm{Y}=4.17+1.24 \mathrm{x} \\
& \mathrm{Y}=4.17+1.24 \times 55 \\
& \mathrm{Y}=72.37
\end{aligned}
$$

Expected Production cost $=$ Rs. 72.37 million.
(02 marks) (Total 10 marks)

One (01) compulsory question.

(Total 20 marks)

Suggested Answers to Question Six:

Chapter 1-Comparing Two Quantitative Variables
(A) $3 x+5 y=36$

$$
\begin{equation*}
2 x+6 y=32 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
x=7, \quad y=3 \tag{2}
\end{equation*}
$$

$(1) \times 2 \rightarrow 6 x+10 y \quad=72 \quad-(3)$
$(2) \times 3 \rightarrow 6 x+18 y$
$=96$
(4) - (3)
(1)

$$
\begin{aligned}
3 \mathrm{x}+5 * 3 & =36 \\
3 \mathrm{x} & =36-15 \\
3 \mathrm{x} & =21 \\
\mathbf{x} & =7
\end{aligned}
$$

(B)

Chapter 6-II Time Series

$$
\begin{array}{ll}
\mathrm{a} & =\frac{225+275+250+350}{4} \\
& =1,100 / 4 \\
& =\mathbf{2 7 5} \\
\mathrm{b} & =\frac{350+250+300+275}{4} \\
& =1,175 / 4 \\
& =\mathbf{2 9 3 . 7 5} \\
\mathrm{c} & =\underline{275+400+275+350} \\
& 4 \\
& =1,300 / 4 \\
& =\mathbf{3 2 5}
\end{array}
$$

$$
\begin{aligned}
\mathrm{d} & =(262.5+275) / 2 \\
& =537.5 / 2 \\
& =\mathbf{2 6 8 . 7 5} \\
\mathrm{e} \quad & =(293.75+306.25) / 2 \\
& =300 / 2 \\
& =\mathbf{3 0 0} \\
\mathrm{f} & =\mathrm{Y} / \mathrm{T} \\
& =250 / 278.125 \\
& =\mathbf{0 . 8 9 9} \\
\mathrm{g} & =275 / 328.125 \\
& =\mathbf{0 . 8 3 8}
\end{aligned}
$$

(C)

Chapter 7-Part I- Probability and its Applications
a)

R - Draw a red marble
 B- Draw a black marble

(05 marks)
b)
(i) Both marbles are of same colour.

$$
\mathbf{P}=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{D})
$$

$$
\frac{25}{64}+\frac{9}{64}=\underline{\underline{34}}
$$

(02 marks)
(ii) At least one red marble .

$$
\begin{aligned}
\mathbf{P} & =\mathbf{1}-\mathbf{P}(\mathbf{D}) \\
& =1-\frac{9}{64}
\end{aligned}
$$

$=\begin{array}{r}55 \\ \underline{64}\end{array}$
(02 marks)
(iii) At least one black marble

$$
\begin{aligned}
\mathbf{P} & =\mathbf{1}-\mathbf{P}(\mathbf{A}) \\
& =1-\frac{25}{64} \\
& =\underline{\underline{\mathbf{3 9}}} \\
& \underline{\underline{\mathbf{4}}}
\end{aligned}
$$

(02 marks)
(Total 20 marks)

End of Section C

Notice :

These answers complied and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.
These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers".
The fundamental objective of this publication is to add completeness to its series of study texts, designs especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

[^0]
[^0]: © 2020 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)
 All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

