

Association of Accounting Technicians of Sri Lanka

July 2019 Examination - AA1 Level

Suggested Answers

(AA12)

QUANTITATIVE METHODS FOR BUSINESS
(QMB)

Association of Accounting Technicians of Sri Lanka
No. 540, Ven. Muruththettuve Ananda Nahimi Mawatha, Narahenpita, Colombo 05.
Tel : 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA AA1 Examination - July 2019
(AA12) Quantitative Methods for Business SUGGESTED ANSWERS

Fifteen (15) compulsory questions
(40 Marks)
SECTION - A

Suggested Answers to Question 01:
1.1

> Answer (3)
> $8 y+6=3 y+21$
> $5 y \quad=15$
> $y \quad=15 / 5$
1.2

```
Answer (2)
I= prt P}=12000,\textrm{r}=12.0%=0.12,\textrm{t}=
I= 12 000 X 0.12 X 3
I=4320
```

1.3

Answer (3)
$\mathrm{TC}=3,000 \mathrm{x}-4 \mathrm{x} 2+10000$
$\underline{M C=30000-8 x}$
1.4

> Answer (4)
> $2 x+y=14$
> $3 x+2 y=24$
> Answer (using calculator)
> $\underline{X=4, y=6}$

1.5

```
Answer (1)
\(\Sigma \mathrm{x}=30, \Sigma \mathrm{y}=180, \mathrm{n}=6\)
    \(y=a+2 x\).
    \(\mathrm{a}=\overline{\mathrm{y}}-\mathrm{b} \overline{\mathrm{x}}\)
    \(\mathrm{a}=(180 / 6)-(2 \times 30 / 6)\)
\(\underline{\underline{a}=20}\)
```


1.6

Answer (2)

$$
\begin{aligned}
\text { Weighted average relative price index } & =\frac{\sum \mathrm{Xw}}{\sum \mathrm{w}} \\
& =\frac{(115 \times 7+110 \times 8+118 \times 10)}{7+8+10} \\
& =114.6 \\
& =\underline{\underline{\mathbf{1 1 5}}}
\end{aligned}
$$

1.7

Answer (3)

$T=483 x+6,636$
X value for year 2017 is 7

$$
\begin{aligned}
\therefore & \mathrm{T}=483 \times 7+6,636 \\
& =\underline{\underline{\mathbf{1 0 , 0 1 7}}}
\end{aligned}
$$

1.8

Answer (3)

A \& B are two mutually exclusive events
$\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
$=0.57+0.28$
$=\underline{\underline{0.85}}$

1.9

Answer (2)

$$
\begin{aligned}
\mathrm{E}(\mathrm{X}) & =\sum \mathrm{X} \times \mathrm{P} \\
& =(-6,000 \times 0.3)+(8,000 \times 0.35)+(11,000 \times 0.15)+(15,000 \times 0.20) \\
& =\underline{\mathbf{5 , 6 5 0}}
\end{aligned}
$$

1.10

Answer (1)

arithmetic sequence : $22,27,32,37, \ldots \ldots$.

$$
\begin{array}{ll}
\mathrm{a}=22, & \mathrm{~d}=5 \\
\mathrm{Tn} & =\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \\
\mathrm{~T} 20 & =22+(19 \times 5) \\
& =\underline{\underline{\mathbf{1 1 7}}}
\end{array}
$$

1.11

Highest positive Net Present Value (NPV) is Rs.14,060
Therefore the best investment option is " D "
Highest Internal Rate of Return is 22\%
According to IRR method the best project is " A "

1.12

Method 1

$$
\begin{array}{ll}
\text { Effective Annual Rate } \quad & =1(1+\mathrm{r})^{\mathrm{n}}-1 \quad \mathrm{r}=0.16 / 4=0.04, \mathrm{n}=4 \\
& =1(1+0.04)^{4}-1 \\
& =0.1699 \\
& =\underline{\underline{\mathbf{1 6 . 9 8 \%}}}
\end{array}
$$

Method 2

$$
\begin{aligned}
& \text { A }=\mathrm{x}(1+\mathrm{r}) \mathrm{n} \quad \mathrm{r}=0.16 / 4= \\
& \\
& \\
& \\
& = \\
& \\
& \text { Effective Annual Rate } \\
& \\
& =100(1+0.04) 4 \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

1.13 Profit Function=Revenue Function-Cost Function

$$
\begin{aligned}
& \mathrm{TR}=22 \mathrm{x} \\
& \mathrm{TC}=15 \mathrm{x}+12,600 \\
& \mathrm{TP}=\mathrm{TR}-\mathrm{TC} \\
& \mathrm{TP}=22 \mathrm{x}-(15 \mathrm{x}+12,600) \\
& \underline{\mathbf{T P}=\mathbf{7 x}-\mathbf{1 2 , 6 0 0}}
\end{aligned}
$$

1.14 Statement is True

1.15 Statements is False

Suggested Answers to Question 02:

(a) Chapter 02-Part I -Quantitative Finance-Interest
$\mathrm{A}=\mathrm{P}(1+\mathrm{r})^{\mathrm{n}} \quad \mathrm{X}=500000, \mathrm{r}=9 \%=0.09, \mathrm{t}=3$
$\mathrm{S}=500000 \times(1.09)^{3}$
$S=\underline{\underline{\text { Rs. } 647,514.50}}$

Total amount in her account at the end of 3 years is Rs.647,514.50
(03 marks)
(b) Chapter 02-Part II -Quantitative Finance-Discounting
(i)

Method I

$$
\begin{aligned}
& A=\frac{\mathrm{S} \mathrm{x} \mathrm{R}^{\mathrm{n}} \times(\mathrm{R}-1)}{\mathrm{R}^{\mathrm{n}}-1} \quad \mathbf{A}=\mathbf{7 5} \mathbf{0 0 0}, \mathbf{n}=\mathbf{3}, \mathbf{r}=\mathbf{0 . 0 8} \\
& 75000=\frac{\mathrm{X}(1+1.08)^{3} \times 0.08}{(1+0.08)^{3}-1} \\
& x=\frac{75000 \times 1.08^{3} \times 0.08}{(1+1.08)^{3}-1} \\
&=\underline{\underline{7,558.272}} \\
& 0.259712 \\
& \mathbf{x} \quad=\underline{\underline{\text { Rs.29.102.51 }}}
\end{aligned}
$$

Annual Installment is Rs.29,102.51
(ii)

Method II

Year	Loan	Payment	DCF (8\%)	Repayment
0	75,000	-	-	-
1	-	A	-	-
2	-	A	2.577	2.577 A
3	-	A	-	-

$=>2.577 \mathrm{~A} \quad=75,000$
$\begin{aligned} & \text { A }=\underline{75,000} \\ & 2.577 \\ &=\underline{\underline{\text { Rs. } 29,103.60}}\end{aligned}$
(b)
(ii)

Amortization Schedule

Year	Amount Outstanding at the beginning	Interest Payable	Installment	Final Balance
0	75,000	-	-	-
1	75,000	6,000	29,103	51,897
2	51,897	4,151	29,103	26,944
3	26,946	2,156	29,103	-

Suggested Answers to Question 03:

(c) Chapter 03-Financial Operative Measures

Profit Function=TR-TC

$$
\begin{aligned}
& =20 x+3 X^{2}-\left(4 X^{2-} 500 x+1500\right) \\
& =20 x+3 X^{2}-4 X^{2-} 500 x+1500 \\
& =520 X-X^{2}-1,500
\end{aligned}
$$

Maximum Profit $=\underline{d p}=520-2 x$
dx
$2 \mathrm{x}=520$
$X=260$ Units

Alternative Answer

MR $=20+6 \mathrm{x}$
MC $=8 x-500$
MR $=\mathrm{MC}$
$20+6 x=8 x-500$
$2 \mathrm{X}=520$
$\underline{\underline{X} \quad 260 \text { Units }}$
(05 marks)
(b)
(i) $\mathrm{TC}=\mathrm{FC}+\mathrm{VC}$

TC $=\underline{\underline{2 q}+5 q+400000}$
(02 marks)
(ii) At the Break Even Point

$$
\begin{aligned}
& \mathrm{TR}=\mathrm{TC} \\
& 2^{2}+9 \mathrm{q}+250000=2 \mathrm{q}^{2}+5 \mathrm{q}+400000 \\
& 4 \mathrm{q} \quad=400,000-250,000 \\
& 4 \mathrm{q} \quad=150,000 \\
& \underline{q} \quad=\mathbf{3 7 , 5 0 0}
\end{aligned}
$$

Break-even quantity $=\underline{\underline{\mathbf{3 7}, 500} \text { Units }}$

Suggested Answers to Question 04:

Chapter 04-Numerical Descriptive Measures

Life Time	Mid-Point-(x)	No of batteries(f)	F(x)	F(x) ${ }^{\mathbf{2}}$
$\mathbf{5 0 - 5 4}$	52	2	104	5,408
$\mathbf{5 5 - 5 9}$	57	29	1,653	94,221
$\mathbf{6 0 - 6 4}$	62	37	2,294	142,228
$\mathbf{6 5 - 6 9}$	67	16	1,072	71,824
$\mathbf{7 0 - 7 4}$	72	14	1,008	72,576
$\mathbf{7 5 - 7 9}$	77	2	154	11,858
		$\sum \mathrm{f}=\mathbf{1 0 0}$	$\sum \mathrm{fX}=\mathbf{6 , 2 8 5}$	$\sum \mathrm{fX}^{2}=\mathbf{3 9 8 , 1 1 5}$

(a)(i)Mean $=\frac{\sum \mathrm{f}(\mathrm{x})}{\sum \mathrm{f}}=\frac{6285}{100}=\underline{\mathbf{6 2 . 8 5}}$

Standard Deviation $=\sqrt{\frac{\sum f X^{2}}{\sum \mathrm{f}}-(\overline{\mathrm{X}})}{ }^{\text {(ii) }}$

$$
={\sqrt{\frac{398,115}{100}-\left(\frac{6285}{100}\right)^{2}}}^{2}
$$

$$
=\sqrt{3,981 \cdot 15-3,950.12}
$$

$=\underline{\underline{5.5702}}$
(b) Chapter 07-Probability and its applications II

X : weight of a newborn baby (kg)
$\mu=3.43$
$\mathbf{Z} \quad \begin{aligned} & \sigma=0.65 \\ & = \\ & \frac{\mathbf{X}-\boldsymbol{\mu}}{\boldsymbol{\sigma}}\end{aligned}$

Suggested Answers to Question 05:

Chapter 05-Comparing two quantative variables

$\sum \mathrm{X}=2,702, \quad \sum \mathrm{Y}=3,864, \quad \sum \mathrm{XY}=1,490,621, \sum \mathrm{X}^{2}=1,044,554, \sum \mathrm{Y}^{2}=2,134,110, \mathrm{n}=7$
(a)
$b=\frac{n \sum X Y-\sum X \cdot \sum Y}{n \sum X^{2}-\left(\sum X\right)^{2}}$
$\mathrm{b}=\frac{7 \mathrm{X} \mathrm{1,490,621-2,702} \mathrm{\times 3,864}}{(7 \times 1,044,554)-(2,702)^{2}}$
$b=\frac{10,434,347-10,440,528}{7,311,878-7,300,804}$

$$
\mathrm{b}=\frac{-6,181}{11,074}
$$

b $\quad=\underline{-0.55815}$

$$
\begin{aligned}
\mathbf{Y} & =\frac{\sum \mathrm{Y}}{\mathrm{~N}} \\
& =\frac{3,864}{\mathbf{7}} \\
& =\underline{\underline{\mathbf{5 5 2}}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{Y} & =\frac{\sum x}{n} \\
& =\frac{3,864}{7} \\
& =\underline{\underline{\mathbf{3 8 6}}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{a} & =\overline{\mathbf{y}}+\mathbf{b x} \\
& =552-(-0.558) * 386 \\
& =552+215.388 \\
& =\underline{\underline{\mathbf{7 6 7 . 3 8 8}}}
\end{aligned}
$$

(b)

$$
\text { Substitute } \mathrm{x}=350
$$

$$
\begin{array}{rll}
\mathrm{Y} & =767.388-0.558 \mathrm{x} \\
\mathrm{Y} & =767.388-0.0558 \times 350 \\
\mathrm{Y} & =767.388-195.3 \\
\mathrm{Y} & =572.088
\end{array}
$$

Sales income is Rs.572/-
(A) Chapter 06-Part I-Index Numbers

$\mathbf{P 1}$	$\mathbf{P}_{\mathbf{0}}$	$\mathbf{q}_{\mathbf{0}}$	$\mathbf{p}_{\mathbf{1}}$	$\mathbf{p}_{\mathbf{1}} \mathbf{q}_{\boldsymbol{0}}$	$\mathbf{p}_{\mathbf{0}} \mathbf{q}_{\boldsymbol{0}}$
155	120	45	155	6,975	5,400
105	80	25	105	2,625	2,000
100	75	60	100	6,000	4,500
				$\sum=\mathbf{1 5 , 6 0 0}$	$\sum=\mathbf{1 1 , 9 0 0}$

Laspeyre's Price Index $\left(L P_{1 / 0}\right)=\frac{\sum\left(p_{1} \times q_{0}\right)}{\sum\left(p_{0} \times q_{0}\right)} \times 100$
$=\frac{15600}{11900} \times 100$
$=131.09$
(B) Chapter 06-Part II-Time Series
(i) $\mathrm{a}=\frac{260+280+290+300}{4}=1130 / 4=\underline{\underline{\mathbf{2 8 2} .5}}$
$\mathrm{b}=\frac{280+290+300+320}{4}=1190 / 4=\underline{\underline{\mathbf{2 9 7 . 5}}}$
$c=\underline{270+282.5}=\underline{\underline{\mathbf{2 7 6} .25}}$
2
$\mathrm{d}=\frac{\mathbf{2 8 2 . 5 + 2 9 7 . 5}}{2}=\underline{\underline{\mathbf{2 9 0}}}$
$e=\underline{260}=\underline{\underline{0.99}}$
$\mathrm{f}=\underline{276.25} \quad \underline{\underline{\mathbf{1 . 0 1}}}$
(06 marks)
(C) Chapter 07-Probability and its Applications-I
(a) Good
(04 marks)
(b) (i)

$$
\begin{aligned}
& (0.16 * 0.04)+(0.5 * 0.05)+(0.34 * 0.07) \\
= & 0.0064+0.015+0.0238 \\
= & \underline{\underline{\mathbf{0 . 0 4 5 2}}}
\end{aligned}
$$

(ii) $0.5 * 0.03$

$$
=\underline{\underline{0.015}}
$$

Abstract

Notice:

These answers complied and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students. These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers". The fundamental objective of this publication is to add completeness to its series of study texts, designs especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

© 2019 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka). All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

