

Association of Accounting Technicians of Sri Lanka

AA1 Examination - January 2018

Questions and Suggested Answers Subject No : AA12

QUANTITATIVE METHODS FOR BUSINESS (QMB)

Association of Accounting Technicians of Sri Lanka
No. 540, Ven. Muruththettuve Ananda Nahimi Mawatha, Narahenpita, Colombo 05.

Tel : 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA
 EDUCATION AND TRAINING DIVISION
 AA1 Examination - January 2018
 (AA12) Quantitative Methods for Business SUGGESTED ANSWERS

Objective Test Questions (OTQs)
Fifteen (15) compulsory questions
(Total 40 marks)

Suggested Answers to Question One:

$$
1.1 \quad \begin{array}{ll}
2+3 y & =y+14 \\
2 y & =12 \\
\mathbf{y} & =\mathbf{6}
\end{array}
$$

$1.2 \quad \mathrm{~A} \quad=\mathrm{P}(1+\mathrm{r})^{\mathrm{n}}$
$\mathrm{P}=500000 \quad \mathrm{r}=0.12 \quad \mathrm{n}=2$

A $\quad=500000 \times 1.12^{2}$
A =627200 Answer (3)
1.3 TC $=6 \mathrm{x}^{2}-4 \mathrm{x}+500$

> Answer (1)
1.4 Answer (2)
1.5 Answer (3)

$1.6 \quad$			
	TR		TC
30 x	$=$	$10 \mathrm{x}+2400$	
20 x	$=$	2400	
\mathbf{x}	$=$	$\mathbf{1 2 0}$	

[^0]1.7 $\begin{aligned} & \text { Simple aggregate price }= \\ & \text { index for } 2016\end{aligned}$

$$
\begin{aligned}
& =\frac{452}{335} \times 100 \\
& =\mathbf{1 3 4 . 9 3}
\end{aligned}
$$

Answer (2)

1.8

A $=$
Rs. 2402
$\mathrm{x}=1000, \mathrm{n}=3, \mathrm{r}=0.12$

Year	Amount	DF	DV
1	1,000	0.893	893
2	1,000	0.797	797
3	1,000	0.712	712
			$\mathbf{2 , 4 0 2}$

Answer (3)
$1.9 \quad$ Mean $\overline{(\mathrm{X})}=\frac{11+12+16}{3}=39 / 3$
Answer (2)
$=13$
1.10 Standard Deviation (S.D) $=\sqrt{\left\{\frac{521}{3}-13^{2}\right\}}$

$$
=2.16
$$

Answer (4)

1.11 The probability that he / she is a junior manager. $=\mathbf{0 . 2 7 7 8} \mathbf{~ o r} \frac{\mathbf{5 0}}{\mathbf{1 8 0}}$
1.12 The probability that he / she is a management assistant. $=\mathbf{0 . 5} \mathbf{~ o r} \frac{\mathbf{9 0}}{\mathbf{1 8 0}}$
1.13 The probability that he / she works out of Colombo. $=\mathbf{0 . 5 5 5 6}$ or $\frac{\mathbf{1 0 0}}{\mathbf{1 8 0}}$
1.14 probability that he / she works in Colombo given that he / she is a Senior

$$
\text { manager. }=0.6250 \text { or } \frac{25}{40}
$$

1.15 the probability that he $/$ she is married $=(40 / 180) \times 0.8+(50 / 180) \times 0.6+(90 / 180) \times 0.5$

$$
=0.5944 \text { or } 107 / 180
$$

End of Section A

SECTION -B

Four (04) compulsory questions.
(Total 40 marks)

Suggested Answers to Question Two:

(a) $\quad \mathrm{R}(\mathrm{x})=\mathrm{pxq}$
$R(x)=(66-X)(X)$
$\underline{\mathbf{R}(x)=66 x-x^{2}}$
(03 marks)
(b) Profit function

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x})=\mathrm{R}(\mathrm{x})-\mathrm{C}(\mathrm{x}) \\
& \mathrm{P}(\mathrm{x})=\left(-\mathrm{x}^{2}+66 \mathrm{x}\right)-\left(2 \mathrm{x}^{2}+18 \mathrm{x}+500\right) \\
& \mathrm{P}(\mathrm{x})=66 \mathrm{x}-\mathrm{x}^{2}-2 \mathrm{x}^{2}-18 \mathrm{x}-500 \\
& \mathrm{P}(\mathbf{x})=\mathbf{- 3} \mathbf{x}^{2}+\mathbf{4 8 x}-\mathbf{5 0 0} \\
& \hline
\end{aligned}
$$

(03 marks)
(c)

$$
\begin{aligned}
\mathrm{R}(\mathrm{x}) & =-\mathrm{x}^{2}+66 \mathrm{x} \\
\mathrm{MR} & =\frac{\mathrm{dR}}{\mathrm{dx}} \\
\mathrm{MR} & =-2 \mathrm{x}+66 \\
\mathrm{C}(\mathrm{x}) & =2 \mathrm{X}^{2}+18 \mathrm{X}+500 \\
\mathrm{MC} & =4 \mathrm{X}+18
\end{aligned}
$$

At maximum profit

$$
\mathrm{MR}=\mathrm{MC}
$$

$$
-2 x+66=4 X+18
$$

$$
6 \mathrm{X}=48
$$

$$
X \quad=8
$$

No. of units 8 (for the maximum profit)

(04 marks)

Alternative Answer

```
Using profit function \(=\mathrm{dp} / \mathrm{dx} \quad=0\)
    \(0=\frac{d\left(-3 x^{2}+48 x-500\right)}{d x}\)
    \(0=-6 \mathrm{x}+48-0\)
    \(6 \mathrm{x}=48\)
    \(\mathbf{x}=8\)
```


Suggested Answers to Question Three:

poq ${ }_{0}$	p1q0	p1q1	poq ${ }_{1}$
$105 \mathrm{X} 40=4200$	$85 \mathrm{X} 40=3400$	$85 \times 70=5950$	105X70=7350
140X65=9100	160X65=10400	160X35=5600	140X35=4900
250X20=5000	200X20=4000	200X45=9000	250X45=11250
$70 \mathrm{X} 50=3500$	$60 \mathrm{X} 50=3000$	$60 \mathrm{X} 75=4500$	$70 \times 75=5250$
21800	20800	25050	28750

(a)

$$
\begin{aligned}
\text { Laspeyre's Price Index }\left(L P_{1 / 0}\right) & =\frac{\sum\left(p_{1} \times q_{0}\right)}{\sum\left(p_{0} \times q_{0}\right)} \times 100 \\
& =\frac{20,800}{21,800} \times 100 \\
& =\underline{\mathbf{9 5 . 4 1 \%}}
\end{aligned}
$$

b)

$$
\begin{array}{r}
\text { Paasche's Price Index }\left(P P_{1 / 0}\right)=\frac{\sum\left(p_{1} \times q_{1}\right)}{\sum\left(p_{0} \times q_{1}\right)} \times 100 \\
=\frac{25,050}{28,750} \times 100 \\
=\underline{\mathbf{8 7 . 1 3 \%}}
\end{array}
$$

Suggested Answers to Question Four:

(a)

(b)

$$
\begin{aligned}
\mathrm{r} & \frac{\mathrm{n} \sum \mathrm{XY}-\sum \mathrm{X} \cdot \sum \mathrm{Y}}{\sqrt{\left(\mathrm{n} \sum \mathrm{X}^{2}-\left(\sum \mathrm{X}\right)^{2}\right)\left(\mathrm{n} \sum \mathrm{Y}^{2}-\left(\sum \mathrm{Y}\right)^{2}\right)}} \\
\mathrm{r} & =\frac{10 \times 6,981-101 \mathrm{X} 563}{\sqrt{\left(10 \mathrm{X} \mathrm{1385-101}^{2}\right)\left(10 \mathrm{X} \mathrm{36521-563}^{2}\right)}} \\
= & \sqrt{(13,850-10,201)(365,210-316,969)} \\
= & \sqrt{3,649 \times 48,241} \\
& =\frac{\mathbf{0 . 9 7 5 8}}{\sqrt{3,947}}
\end{aligned}
$$

 (04 marks)
 (c) These two variables have Strong positive linear relationship

Suggested Answers to Question Five:

(a)
$\mathrm{b}=\frac{\mathrm{n} \sum \mathrm{XY}-\sum \mathrm{X} \cdot \sum \mathrm{Y}}{\left(\mathrm{n} \sum \mathrm{X}^{2}-\left(\sum \mathrm{X}\right)^{2}\right)}$

$$
\begin{aligned}
\overline{\mathrm{x}} & = \\
& =\quad \Sigma \mathrm{x} / \mathrm{n} \\
& 55 / 10
\end{aligned}
$$

$$
=\quad 5.5
$$

$\mathrm{b}=10 \times 4,185-55 \times 685$
$\mathrm{b}=\frac{\left(10 \times 385-55^{2}\right)}{3,850-3,025}$

$$
\bar{y} \quad=\quad \Sigma y / n
$$

$$
=685 / 10
$$

$$
=\quad 68.5
$$

$$
\mathrm{b}=\frac{4,175}{825}
$$

$$
\mathbf{b}=5.0606
$$

$$
\begin{array}{ll}
\mathrm{a} & = \\
\mathrm{y}-\mathrm{b} \overline{\mathrm{x}} \\
\mathrm{a} & =68.5-5.0606 \times 5.5 \\
\mathrm{a} & =68.5-27.83 \\
\mathbf{a} & =\mathbf{4 0 . 6 6 6 7}
\end{array}
$$

Regression line $y=a+b x$

$$
y=40.67+5.06 x
$$

(06 marks)
(b)

Year	Cash inflow	D.F. (10\%)	PV
0	$(200,000)$	1	$(200,000)$
1	65,000	0.909	59,085
2	65,000	0.826	53,690
3	65,000	0.751	48,815
4	65,000	0.683	44,395

End of Section B

One (01) compulsory question.
(Total 20 marks)

Suggested Answers to Question Six:

(A)

Day	Save(Rs.)
1	30
2	60
3	120
4	240
5	480
Total	$\mathbf{9 3 0}$

Total save amount Rs. 930.00

OR

$\mathrm{a}=30, \quad \mathrm{r}=2, \quad \mathrm{n}=5$

$$
\begin{aligned}
\mathrm{Sn} & =\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{(\mathrm{r}-1)} \\
\mathrm{Sn} & =\frac{30\left(2^{5}-1\right)}{(2-1)} \\
\mathrm{Sn} & =\frac{30(32-1)}{1} \\
& =30 \times 31 \\
\mathrm{Sn} & =\mathbf{9 3 0}
\end{aligned}
$$

Total save amount Rs. 930.00
(04 marks)
(B)

Substituting $\mathrm{y}=4$,in (1)"

$$
\begin{array}{ll}
2 \mathrm{x}+32 & =72 \\
2 \mathrm{x} & =40 \\
\mathrm{x} & =20
\end{array}
$$

$$
\left\{\begin{array}{c}
x=20 \\
y=4
\end{array}\right\}
$$

(C) (a)

$$
\begin{aligned}
\mathrm{S} & =750,000 \\
\mathrm{r} & =0.12 / 4=\mathbf{0 . 0 3} \\
\mathrm{n} & =4 \times 5=20
\end{aligned}
$$

$$
\mathrm{S}=\frac{\mathrm{P}\left[(1+\mathrm{r})^{\mathrm{n}}-1\right]}{\mathrm{r}}
$$

$$
750,000=\frac{\mathrm{P}\left[(1+0.03)^{20}-1\right]}{0.03}
$$

$$
\mathrm{P}=\frac{750,000 \times 0.03}{(1.03)^{20}-1}
$$

$$
\mathrm{P}=\frac{22,500}{0.806}
$$

$$
=\quad \underline{\underline{27,916}}
$$

Quarterly deposit $=\quad$ Rs. 27,916/-

$$
\begin{align*}
& 2 x+8 y=72 \tag{1}\\
& 4 x+4 y=96 \quad \text { (2) } \\
& \text { (1) } \times 2 \quad 4 x+16 y=144 \text { - (3) } \\
& \text { (3)-(2) } 12 \mathrm{y}=48 \\
& \mathrm{y} \quad=4
\end{align*}
$$

Alternative Answer

S	$=\frac{\operatorname{AR}\left(R^{n}-1\right)}{(R-1)} \quad$ Where $R=r+1$
S	$=\operatorname{AR} \frac{\left(R^{n}-1\right)}{(R-1)}$
750,000	$=\frac{A(1.03)[(1.03) 20-1]}{0.03}$
A	$=\frac{750,000 \times 0.03}{(1.03)(0.8061)}$
	$=22,500 / 0.8302$
	$=\mathbf{2 7 , 1 0 1 . 9}$

Quarterly deposit $=\quad$ Rs. 27,101.90
(C) (b)

(05 marks)
(Total 20 marks)

End of Section C

Notice :

These answers complied and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.
These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers".
The fundamental objective of this publication is to add completeness to its series of study texts, designs especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

[^1]
[^0]: Answer (2)

[^1]: © 2017 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)
 All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)

