

Association of Accounting Technicians of Sri Lanka

January 2016 Examination - AA1 Level

Questions and Suggested Answers Subject No : AA12

QUANTITATIVE METHODS FOR BUSINESS (QMB)

Association of Accounting Technicians of Sri Lanka

No. 540, Ven. Muruththettuve Ananda Nahimi Mawatha, Narahenpita, Colombo 05.

Tel: 011-2-559 669

A publication of the Education and Training Division

THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA

EDUCATION AND TRAINING DIVISION

AA1 Examination - January 2016 (12) Quantitative Methods for Business

SUGGESTED ANSWERS

SECTION - A

Objective Test Questions (OTQs) Sixteen (16) compulsory questions (Total 40 Marks)

Suggested Answers to Question One:

- 1.1 Correct Answer is (4)
- 1.2 7% of simple annual interest rate in the question shuld be 7% of compound annual interest rate.

$$S = \frac{AR (R^{n} - 1)}{R - 1}$$

By substituting ; A = 15000;
$$r^0 = 7\% = 0.07$$
; R = 1 + r = 1 + 0.07 = 1.07; and n = 0
$$S = \underbrace{15000 \times 1.07 \times \left[(1.07)^{10} - 1 \right]}_{0.07}$$

Rs. 221.754/-

:. Correct Answer is (2)

1.3 By using the furmula;

$$\begin{array}{rcl} r & = & n\Sigma xy - (\Sigma x) \ (\Sigma y) \\ & \sqrt{[n\Sigma x^2 - (\Sigma x)^2] \ [n\Sigma y^2 - (\Sigma y)^2]} \\ & = & 5(1159.7) - (311) \ (18.6) \\ & \sqrt{[5(19359) - (311)^2] \ [5(69.82) - (18.6)^2]} \\ r & = & 13.59 \ / \ 15.2434 \\ r & = & 0.9119 \end{array}$$

:. Correct Answer is (1)

Alternative Method: By using the calculator

1.4 The expected interest rate
$$= \sum X \times P_{(X=x)}$$

$$= (7.5 \times 0.10) (7.80 \times 0.22) + (8 \times 0.26) (8.6 \times 0.20) + (8.8 \times 0.15) + (9.5 \times 0.07)$$

$$= 8.251\%$$

$$= 8.25 \text{ (to 2 d.p.)}$$

- :. Correct Answer is (4)
- 1.5 The coefficient of variation CV = S / x

When
$$\overline{x} = \Sigma x / n = 50 / 4 = 12.5$$
 and
$$S = \sqrt{\frac{\Sigma (x - \overline{x})^2}{n}}$$

$$= \sqrt{125 / 5}$$

$$= \sqrt{25}$$

$$= 5$$

$$CV = 5 / 12.5 = 0.4$$

- :. Correct Answer is (3)
- 1.6 Free hand method and least square method
 - :. Correct Answer is (4)

1.7 The weighted average price relative =
$$\frac{\Sigma(p_1/p_0) \text{ w}}{\Sigma \text{w}}$$

= $\frac{(120 \times 16) + (80 \times 25) + (160 \times 15) + (75 \times 12) + (220 \times 20)}{(16 + 25 + 15 + 12 + 20)}$
= $\frac{11620}{88}$
= $\frac{132.045}{132.04}$

:. Correct Answer is (2)

- 1.8 $P \rightarrow V; Q \rightarrow U; R \rightarrow T$
 - ∴ Correct Answer is (2)
- 1.9 **False** (There is a strong positive correlation between two variables)
- 1.10 **True** (The cost of repair is increasing with time)
- 1.11 **False** (y-intercept of the regression line cannot be -200)
- 1.12 **True**
- 1.13 False
- 1.14 Probability of the vehicle been recalled = 0.03

Number of vehicles recalled
$$= 0.03$$

Total number of vehicles

$$\frac{6+11+x}{600} = 0.03$$

$$17+x = 18$$

$$\underline{\mathbf{x}} = \mathbf{1}$$

1.15
$$6 + 11 + 1 + 194 + y + 197$$
 = 600
y = 600 - 409
y = **191**

1.16

P(recalled | Prius) =
$$\frac{P(\text{recalled} \cap \text{Prius})}{P(\text{Prius})}$$

= $\frac{6 / 600}{(6 + 11 + 1) / 600}$
= $6 / 18$
= $1/3$
= $\mathbf{0.33}$

All four (04) questions of this section to be answered.

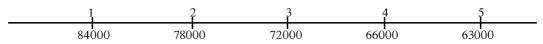
(32 Marks)

Suggested Answers to Question Two:

(a)
$$18 + 21 + x + 30 + 24 + 20 + 14 = 150$$

 $x = 150 - 127$
 $x = 23$

Life Span (hours)	No. of bulbs (f)	Mid point (x)	$\mathbf{U} = \mathbf{\underline{x - A}}$	fU	fU^2
501-600	18	550.5	-300	-5400	1,620,000
601-700	21	650.5	-200	-4200	840,000
701-800	23	750.5	-100	-2300	230,000
801-900	30	850.5 A	0	0	0
901-1000	24	950.5	+100	2400	240,000
1001-1100	20	1050.5	+200	4000	800,000
1101-1200	14	1150.5	+300	4200	1,260,000
		$\Sigma \mathbf{f} = 150$		(1300)	4,990,000


Mean,
$$\overline{x}$$
 = $A + \left[\frac{\Sigma fU}{\Sigma f}\right] \times C$
= $850.5 + (-13 / 150) \times 100$
 \overline{x} = $841.83 \text{ (to 2 d.p.)}$

Standard deviation, S =
$$C \times \sqrt{\left[\frac{\Sigma f U^2}{\Sigma f} - \left(\frac{\Sigma f U}{\Sigma f}\right)^2\right]}$$

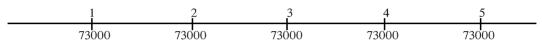
S = $100 \times \sqrt{(499 / 150) - (-13 / 150)^2}$
= 182.19 (to 2 d.p.)

Between Mean & Variance =
$$(4,990,000 / 150) - (-1300 / 150)^2$$

= $33,191.56$

(b) Method I

Option 1: Personal Loan


Let net present value of the 1st option be NPV₁.

Then;

NPV
$$_1$$
 = 84000 × 0.943 + 78000 × 0.890 + 72000 × 0.840 + 66000 × 0.792 + 63000 × 0.747 (From table we have to obtain discount factors)

 $NPV_1 = Rs. 308,445/-$

Option 2: Mortage Loan

Let net present value of the option 2 is NPV₂.

$$NPV_2 = 73000 \times Cum DCF (5, 6\%)$$

(Can obtain from the tables)

$$NPV_2 = 73000 \times 4.212$$

= **Rs.** 307,476/-

 $NPV_2 < NPV_1$

: the 2nd option is the most suitable option to Perera.

Method II

Year	1-	2	-3	4	5
Personal Loan - Option I					
Capital	60,000	60,000	60,000	60,000	60,000
Interest	24,000	18,000	12,000	6,000	3,000
	84,000	78,000	72,000	66,000	63,000
	0.943	0.890	0.840	0.792	0.747
308,445	79,212	69,420	60,480	52,272	47,061
Option II					
Mortgage Loan - Repayment	73,000	73,000	73,000	73,000	73,000
	0.943	0.890	0.840	0.792	0.747
307,476	68,839	64,970	61,320	57,816	54,531

... Most suitable option : Option 2

Suggested Answers to Question Three:

(a) Method I

Cost function,
$$C(x) = 75000 + 100x - 0.03x^2 + 0.000004x^3$$

∴ Marginal Cost function, $C(x) = \frac{d}{dx} [C_{(x)}]$
 $C(x) = \frac{d}{dx} [C_{(x)}]$
 $C(x) = \frac{d}{dx} [C_{(x)}]$
 $C(x) = \frac{d}{dx} [C_{(x)}]$
Demand function, $C(x) = 100 - 0.03(2x) + 0.000004(3x^2)$
 $C(x) = 100 - 0.06x + 0.000012x^2$
Demand function, $C(x) = 100 - 0.005x$
∴ Revenue function $C(x) = 100 - 0.005x^2$
∴ Marginal revenue function, $C(x) = 100 - 0.005x^2$
 $C(x) = 100 - 0.005(2x)$
 $C(x) = 100 - 0.00004(2x)^2 + 0.005(2x)$
 $C(x) = 100 - 0.000004(2x)^2 + 0.005(2x)$

Method II

Revenue (Rx) and Profit (Px) functions;

$$R(x) = x(200 - 0.005x) = 200x - 0.005x^{2}(1)$$

$$P(x) = 200x - 0.005x^{2} - (75,000 + 100x - 0.03x^{2} + 0.000004x^{3})$$

$$= -75,000 + 100x + 0.025x^{2} - 0.000004x^{3}(2)$$

Marginal functions are;

$$C'(x) = 100 \quad 0.06x \mid 0.000012x^2$$

$$R'(x) = 200 - 0.01x$$

$$P'(x) = 100 + 0.05x - 0.000012x^2$$

(b) Let the unit price of product A is x and the unit price of product B is y

$$5x + 8y = 350$$
(1)

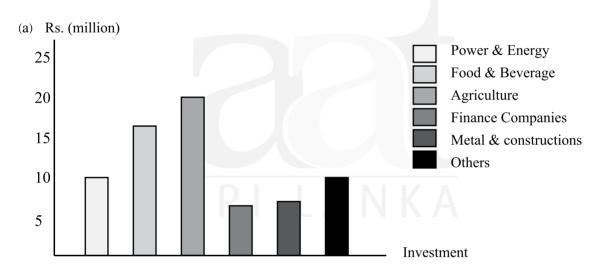
$$x = y + 5 \dots (2)$$

By substituting (2) in (1);

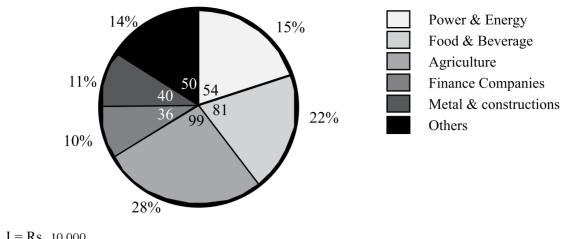
$$5(y+5) + 8y = 350$$

$$5y + 25 + 8y = 350$$

$$13y = 325$$


$$P_{v} = Rs. 25$$

From 2;


$$P_{x} = 25 + 5$$

= Rs. 30

Suggested Answers to Question Four:

(b)	Type of the	Rs. (million)	Degrees	Percentages
	Investment			
	Power & Energy	12	540	15%
	Food & Beverage	18	810	22.5%
	Agriculture	22	990	27.5%
	Finance Companies	8	36^{0}	10%
	Metal & constructions	9	$40.5 = 40^{\circ}$	11.25%
			(rounded down)	
	Others	11	$49.5 = 50^{\circ}$	13.75%
			(rounded up)	
	Total	80	360	100%

(b)
$$I = Rs. 10,000$$

(i) Maturity value according to scheme,
$$A = P(1 + nr)$$

= 10,000 (1 + 3 × 0.05)

$$= Rs. 11,500$$

(ii) Total interest receivable according to
$$= P (1 + r)^n - 10,000$$

$$= 10,000 (1 + 0.05)^3 - 10,000$$

(iii) Effective rate of interests, ERI =
$$(1 + r/f)^f - 1$$

$$=(1+0.05/2)^2-1$$

$$=(1.025)^2-1$$

= 0.0506

= 5.06%

Suggested Answers to Question Five:

Year					
	Q1	Q2	Q3	Q4	
2010	-	-	0.99	1.25	
2011	0.86	0.88	1.02	1.03	
2012	1.00	0.93	1.00	1.13	
2013	0.93	0.92	1.05	1.10	
2014	0.92	0.96	ı	-	
Totals	3.71	3.69	4.06	4.51	
Averages	0.9275	0.9225	1.015	1.1275	3.9925
	$ \begin{array}{r} 0.9275 \times 4 \\ 3.9925 \\ 0.9292 \end{array} $	0.9225 × 4 3.9925 0.9242	1.015 × 4 3.9925 1.0169	1.1275 × 4 3.9925 1.1296	3.9999 ≈ 4
Seasonal Indices	93%	92%	102%	113%	400%

End of Section B

One (01) question of this section to be answered. (28 Marks)

Suggested Answers to Question Six:

(a)

	Price po	er Unit	Sales		Sales P ₁ q ₀	
Item	2014	2015	2014	2015		
Cement	850	1150	1100	980	1,265,000	935,000
Steel	600	610	500	500	305,000	300,000
Tiles	450	350	1400	1650	490,000	630,000
					2,060,000	1,865,000

$$\begin{array}{lll} \mbox{Weighted aggregate} & = & \frac{\Sigma P_1 q_0}{\Sigma P_0 q_0} \times 100 \\ & = & \frac{2,060,000}{1,865,000} \times 100 \\ & = & 110.46\% & \underline{\Omega} \ \ 110.45\% \end{array}$$

(b)

Time	Cash Flow	Discounted Cash	Discounted Cash	
	CDII	Flows (10%)	Flows (20%)	
Period 0	-50,000.00	-50,000.00	-50,000.00	
Period 1	15,000.00	13,636.36	12,500.00	
Period 2	20,000.00	16,528.93	13,888.89	
Period 3	25,000.00	18,782.87	14,467.59	
Period 4	18,000.00	12,294.24	8,680.56	
			_	
Net Present Value		11,242.40	-462.96	

The table is part of the first table and we can see that a 10% discount rate gives a positive NPV and a 20% gives a negative NPV. We can therefore use the formula above and calculate IRR as;

IRR =
$$\frac{N_2 r_1 - N_1 r_2}{N_2 - N_1}$$
=
$$\frac{-474 \times 15 - 4916 \times 20}{-474 - 4916}$$
=
$$\frac{-105430}{-5390}$$
=
$$19.56\%$$

$$d^2P / dQ^2 = -4000 < 0$$

 $\therefore Q = 27.5$ is a maximum
 \therefore Profit maximizing quantity = 28 (to the nearest whole number)
Profit maximizing price, P = -1000 (27.5) + 120000

 $= -4000 \times 1 + 0 = -4000$

End of Section C

= Rs. 92,500

 d^2P / dQ^2

At Q

= 27.5

Notice:

These answers complied and issued by the Education and Training Division of AAT Sri Lanka constitute part and parcel of study material for AAT students.

These should be understood as Suggested Answers to question set at AAT Examinations and should not be construed as the "Only" answers, or, for that matter even as "Model Answers".

The fundamental objective of this publication is to add completeness to its series of study texts, designs especially for the benefit of those students who are engaged in self-studies. These are intended to assist them with the exploration of the relevant subject matter and further enhance their understanding as well as stay relevant in the art of answering questions at examination level.

© 2014 by the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka) All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior written permission of the Association of Accounting Technicians of Sri Lanka (AAT Sri Lanka)