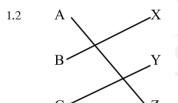


THE ASSOCIATION OF ACCOUNTING TECHNICIANS OF SRI LANKA EDUCATION AND TRAINING DIVISION

AA1 Examination - July 2015 (12) Quantitative Methods for Business

SUGGESTED ANSWERS


Section - A

Answers to ALL questions are expected.

Suggested Answers to Question One:

1.1The bill value of the customer A after deducting the discount = $2125 \ge (95/100) = \text{Rs}$. 2018.75The bill value of the customer B after deducting the discount = $5050 \ge (90/100) = \text{Rs}$. 4545.00The total bill value of the two customers= 2018.75 + 4545.00= Rs. 6563.75

Correct answer is (3)

Correct answer is (1)

- 1.3 **Correct answer is (2)**
- 1.4 $(6+6)/46 \ge 360 = 93.9 \simeq 94^{\circ}$

Correct answer is (3)

1.5 Present value (PV) = 400 x 0.926 + 450 x 0.857 + 480 x 0.794 + 500 x 0.735 + (510 + 1600) x 0.681 = Rs. 2941.58 = Rs. 2942 millions (to the nearest million) * In the paper this is rounded as 2941.

Correct answer is (3)

AA1 / QMB

5	Revenue values	Probabilities		
	5,000	0.1		
	150,000	0.005		
	0	0.895		

Expected profit

Expected revenue - cost

1300 - (5000 x 0.1 + 150000 x 0.005 + 0 x 0.895)

= 1300 - 1250

= Rs. 50

=

=

Correct answer is (4)

1.7 **Correct answer is (1)**

- 1.8 Any three (03) of the following;
 - 1. Investment cost
 - 2. Cash inflows
 - 3. Risk
 - 4. The availability of required capital
 - 5. The need for borrowing it
 - 6. Uncertainity of estimated cash flows
 - 7. Non-financial benefits of an investment
 - 8. Expected return from the investment

1.9 False

1.10 True (directly from the graph)

Alternative method;

The cost function, C = 200000 + 15xThe revenue function, R = 50x (50 = 100000 / 2000)For break-even points 50x = 200000 + 15x 35x = 200000x = 5714.29

- ... The given statement is **True.**
- 1.11 Profit = Revenue $\cos t$ 500,000 - 350,000 = Rs. 150,000

∴ True

- 1.12 False
- 1.13 False

AA1 / QMB

1.14 $P_n q_o$

1.15	Laspereyre's quantity index	=	$\frac{\Sigma q_n P_o}{q_o P_o} \propto 100$
	0.9625	=	$\frac{(90+225+224)}{(12 \text{ x } 10+X \text{ x } 25+15 \text{ x } 16)}$
		=	$\frac{539}{(120+25 \text{ X}+240)}$
		=	$\frac{539}{(360+25X)}$
	0.9625 (360 + 25X)	=	539
	346.5 + 24.0625 X	=	539
	24.0625X	=	192.5
	Х	=	8

1.16 Laspereyre's Price Index (LP) =

$$\frac{\Sigma q_n P_o}{q_o P_o} \propto 100$$

Item	Base Year		Current Year			
	\mathbf{P}_{0}	q ₀	P _n	q _n	$P_o q_o$	$P_n q_o$
А	10	12	14	9	120	168
В	25	8	27	9	200	216
C	16	15	19	14	240	285
					560	669

LP

Laspereyre's Price Index

= (669 / 560) x 100

= 119.46%

End of Section A

03

Answers to ALL questions are expected. (Total 32 marks)

Suggested Answers to Question Two:

(a) Let monthly profit values be a, ar, ar²... respectively is Rs. million. Then; a + ar 36 — (1)36 a(1+r) == \rightarrow a x ar^2 = 9 (ar) a^2r^2 9ar = Since $a \neq 0$ and $r \neq 0$ = 9 9/r ar (2)а = by sub. the value of a in (2), in (1)9 / r (1 + r)36 = 9 + 9r36r = 27r 9 r = 1/3by sub. in (2) : а = 9 / (1/3) 27 S_n a (1 - r)ⁿ Now sub. a = 27; r = 1/3 and n = 8 in $40 \frac{40}{81}$ $\frac{27 \left[1 - (1/3)^8\right]}{1 - (1/3)}$ The total profit of first eight months = = Rs. 40.4938 millions (to 4 d.p.) = (b) 16 14 12 Profit (Rs. million) Mode = 47.510 8 6 4 2 → No. of employees 40.5 M₀50.5 70.5 10.5 20.5 30.5 60.5 AA1 / QMB Quantitative methods for business 04

Suggested Answers to Question Three:

```
(a) The cost function,
```

C = $1/3P^3 - 5P^2 + 16P + 100$ dC/dP = $1/3 \times 3P^2 - 5(2P) + 16(1) + 0$ = $P^2 - 10P + 16$

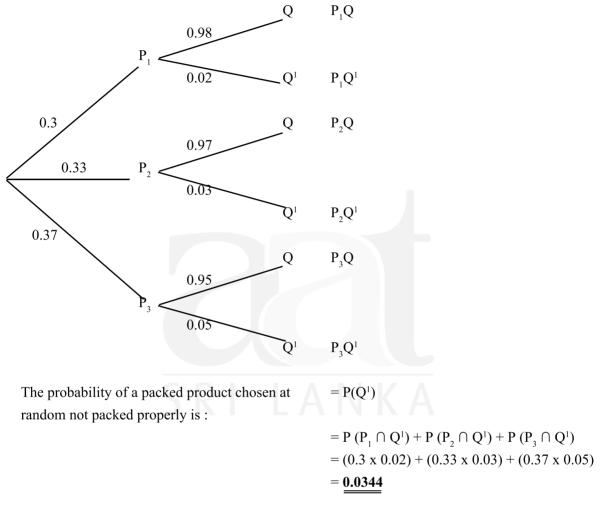
For turning points, let dC/dP = 0 $P^2 - 10P + 16 = 0$ (P - 2) (P - 8) = 0P = 2 or P = 8

 $d^2C/dP^2 = 2P - 10$

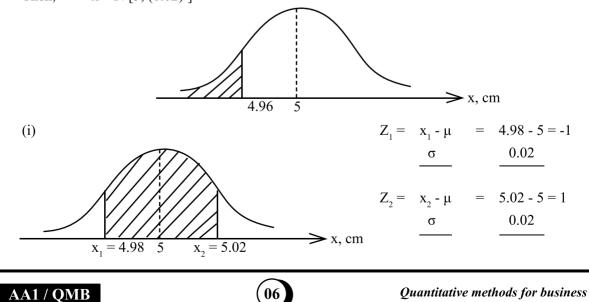
At P = 2, $d^2C/dP^2 = 2(2) - 10 = -6 < 0 \rightarrow P = 2$, is the maximum. At P = 8, $d^2C/dP^2 = 2(8) - 10 = 6 > 0 \rightarrow P = 8$, is the minimum. \therefore The number of units which minimise the production cost = 8

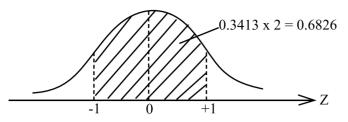
(b)	No. of motor	No. of	Mid point (x)	$\mathbf{U} = (\mathbf{x} - \mathbf{A})$	fU	fU^2
	Cars	Accidents (f)		С		
	41-45	1	43	-3	-3	9
	46-50	2	48	-2	-4	8
	51-55	3) K	53	-1	-3	3
	56-60	6	58)A	0	0	0
	61-65	8	63	1	8	8
	66-70	3	68	2	6	12
	71-75	2	73	3	6	18
		•			$\Sigma fU = 10$	$\Sigma f U^2 = 58$

Mean, $\overline{X} = A + \left(\frac{\Sigma fU}{\Sigma f}\right) \times C$ $\overline{X} = 58 + (10/25) \times 5 = 60$

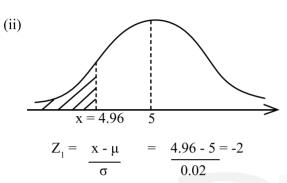

Standard deviation,
$$\sigma$$
 = $C \times \sqrt{\frac{\Sigma f U^2}{\Sigma f} - \left(\frac{\Sigma f U}{\Sigma f}\right)^2}$
= $5 \times \sqrt{(58/25) - (10/25)^2}$
= $5 \times \sqrt{2.32 - 0.16}$
= $\frac{7.348}{10}$ (to 3 d.p.)

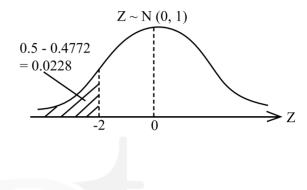
05


AA1 / QMB


Suggested Answers to Question Four:

(a) Let Q be the event at which the products are packed properly and Q¹ be the event at which the products are not packed properly.


(b) Let the length of the given type of steel cables produced be X. Then, $x \sim N [5, (0.02)^2]$



Probability that the length of steel cable is between 4.98cm and 5.02cm.

 $\therefore P(4.98 < x < 5.02) = 0.6826$

:. The percentage of rejected steel cables $= 0.0228 \times 100 = 2.28\%$

Suggested Answers to Question Five:

Life span of a machine (x)	Output	А	В	С
	per hour (y)	xy	x ²	y ²
2	50	100	4	2500
4	60	240	16	3600
6	55	330	36	3025
12	45	540	144	<u>2025</u>
14	40	560	196	1600
16	35	560	<u>256</u>	1225
$\Sigma x = 54$	$\Sigma y = 285$	$\Sigma xy = 2330$	$\Sigma \mathbf{x}^2 = \mathbf{\underline{652}}$	$\Sigma y^2 = \underline{13975}$

Correlation Coefficient, (r)

$$\frac{n\Sigma xy - (\Sigma x) (\Sigma y)}{\sqrt{[n\Sigma x^2 - (\Sigma x)^2] [n\Sigma y^2 - (\Sigma y)^2]}}$$

$$= \frac{6 (2330) - (54) (285)}{\sqrt{[6(652) - (54)^2] [6(13975) - (285)^2]}}$$

$$r = -1410$$

 $\sqrt{996 \times 2625}$

=

r

= <u>-0.872</u> (to 3 d.p.)

End of Section B

AA1 / QMB

Quantitative methods for business

Section - C

Answers to ALL questions are expected.

(Total = 28 marks)

Suggested Answers to Question Six:

- (a) Components of variation in time series :
 - Trend component Seasonal component Cyclical component Irregular component

(b) Computations :

(b) Comput	ations :					
Year	Quarter		Share price (Y) (Rs.)	(i) Moving total values	(ii) centered moving total values	(iii) & (iv) Quarterly centered moving averages and Trend (T) values
2012 2013 2014	1 2 3 4 1 2 3 4 1 2 3 4 1 2	1 2 3 4 5 6 7 8 9 10	88 69 75 105 45 75 65 98 56 91	337 294 300 290 283 294 310 311	631 594 590 573 577 604 621 623	and Trend (T) values 78.875 74.25 73.75 71.625 72.125 75.5 77.625 77.875
2015	3 4 1 2 3 4	11 12 13 14 15 16	66 99 75 96 78 110	 312 331 336 348 359 	643 667 684 707	80.375 83.375 85.5 88.375

AA1 / QMB

Suggested Answers to Question Seven:

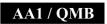
(a) Computation of NPV ;

Net present value of the machine referred to in the first proposal $= NPV_1$

$$NPV_{1} = (20 \times 0.926 + 30 \times 0.857 + 35 \times 0.794 + 35 \times 0.735 + 30 \times 0.681) - 100$$

= 118.175 - 100
$$NPV_{1} = \underline{Rs. \ 18.175 \ million} \ (> 0)$$

Net present value of the machine referred to in the second proposal $= NPV_2$


$$NPV_{2} = (10 \times 0.926 + 15 \times 0.857 + 20 \times 0.794 + 25 \times 0.735 + 25 \times 0.681 + 25 \times 0.630 + (20 + 20) \times 0.583) - 115$$

= 112.465 - 115
$$NPV_{2} = \underline{Rs. (2.535) \text{ million}} (< 0)$$

(b) Since the net present value (NPV) of the first proposal is positive, the company should go ahead with the first proposal because it is profitable.

(c)
$$\text{NPV}_2 < 0$$
 i.e. negative

: The company should not go ahead with the second proposal as it is not profitable.

End of Section C

