Process Costing

Process costing is a cost accumulation method where continous production of *uniform* items occurs in large quantities or mass production occurs passing through many stages/ processes which produce a large amount of *units of production*. This differs from job costing system mainly because cost is accumulated for a *unique* item in job costing whereas in process costing cost is accumulated for a process which produces a large quantity of *like/uniform/homogeneous* products.

Examples:

- 1 Manaufacturing of garments
- 2 Manufacturing of electrical appliences
- 3 Oil refining both petrolium and edible oils

In process costing, an unit of product is a result of a bulky production which passes through a number of production processes. Therefore, output of one process becomes the input of the next process until the production is complete in the final process, when it is transferred to finished goods.

Process costing identifies two types of losses.

a Normal loss/uncontrolable loss/expected loss

This is the type of cost that a process incurs due to inherent factors. So it is an expected loss due to known unavoidable reasons. This loss expected to occur at normal operational conditions which is assumed to be the most efficient production environment.

For example, when shirts are cut from a reel of cloth, part of the cloth may be lost. This requires that cloth input to cutting process should take into account this loss which has to be incurred however efficient the production process is.

b Abnormal Loss/ Avoidable loss

This is the type of loss resulting from inefficiencies in the production process. So this is a loss which can be avoided under an efficient production environment. Mathematically it is the difference between actual loss and normal loss when the actual loss is higher than the expected loss/ normal loss.

What is abnoramal gain?

Abnormal gain is the unexpected gain in the prduction process under normal operational efficiency. Mathematically, this is the difference between the actual output and expected output when the actual output is higher than the expected output.

Alternatively, this is the gain resulting when actual loss is less than the normal/expected loss.

Scrap value of losses

Scrap value is the value at which the loss items can be sold off.

Accounting for scrap values

- i scrap value of normal loss is deducted from the process cost i.e. conventionally from the material cost/input material from previous process.
- ii a scrap value of abnormal loss is set off against the abnormal loss by crediting the abnormal loss account
 - b scrap value of abnormal gain units is debited to abnormal gain account considering that it is a loss of income due to the reason that actual loss is less than the normal loss (Number of units in abnormal gain x scrap value per unit of normal loss).

Double entries

1 Input materials, labour and direct overheads Process account Respective payable account/ Cost control account	debit	credit
2 Normal loss Scrap account/ Normal loss account @ Scrap value Process account @ Scrap Value	debit	credit
3 Abnormal loss Abnormal loss account @ Output Cost Process account @ Output Cost	debit	credit
4 Abnormal gain Process account @ Output Cost Abnormal gain account@Output Cost	debit	credit
5 Sale of scrap items Cash Scrap account/ Normal loss account	debit	credit
6 Cost of abnormal gain (Opportunity cost/ lost scrap value of normal loss) Abnormal gain account Scrap account/normal loss account@ Scrap Value	debit	credit
7 Disposal cost of normal loss (when there is a incremental cost exist to dispose) Process account Cash	debit	credit
8 Disposal cost of abnormal loss (when there is a incremental cost exist to dispose Abnormal loss account Cash	se) debit	credit
9 Cost of production of intemediary processes Current Process Account Previous Process Account	debit	credit
10 Finished goods of final process Inventory-Finished Goods Final Process Account	debit	credit

- 11 Opening WIP should be brought down in the relevent process account and Closing WIP should be carried down in the relevent process account.
- 12
 Balances in abnormal gain and loss accounts are transferred to manufacturing profit & loss account

Steps followed in questions involving

Multiple process

Abnormal losses and abnormal gains

Disposal costs

Opening and clossing WIPs valued at WAC (AVCO)

Step 1 Determine output and losses

- i. Determine expected output
- ii. Calculate normal loss, abnormal loss/gain
- iii. Calculate equivalent units when WIP presents
- Step 2 Calculate cost per unit of output, losses and WIP
- Step 3 Calculate total cost of output, losses and WIP
- Step 4 Complete accounts
 - i. Process accounts
 - ii. Abnormal loss accounts
 - iii. Abnormal gain accounts
 - iv. Normal loss/ scrap account

Meaning of Equivalent Units

Number of completed units that could be produced out of the given number of incomplete physical units with respect to given element of cost.

For example:

If there are 2000 half completed units in terms of labour input, this is equivelant to 1000 completed units in terms of labour input.

Dealing with WIP under weighted average stock valuation metod

Simply calculate the equivalent number of full units obtainable from incomplete physical units given in the question for each input item. In doing so, opening WIP should not be considered as point in time at which the opening WIP is completed is not of interest under weighted average cost method of stock valuation. Then, use these equivelent numbers in calculating per unit cost of each input item. Refer Example 3

Point to Remember

Under weighted average stock valuation method, only closing WIP should be converted to equivelant units.

Example 1.

The manufacturing company has two process in its manufacturing factory. Output of process I becomes the input for process II and process II production is ready for sale.

Expected loss in each process is expected to be at 10% of input material of each process and scrap value is Rs. 2 per unit.

Relevant information for Period Y is given below.

	Proce	ss I	Process	II
	Units	Rs	Units	Rs
Input materials	2,000	8,100.00		
Transferred to Process II	1,750			
Material from Process I			1750	
Added materials				1,900.00
Labour & overheads		10,000.00		22,000.00
Output to finish goods			1600	

Prepare the following accounts

- 1 Process I
- 2 Process II
- 3 Normal Loss/Scrap
- 4 Abnormal Loss
- 5 Abnormal Gain

Answer Process I

Step 1	Determine of	outnut	and	losses
Sieh T	Determine (output	anu	103363

i.	Determine expected output	
	(Units) Input	2000
	Expected loss @ 10%	(200)
		1800
ii.	Abnormal loss/gain (Units)	
	Expected output	1800
	Actual output	1750
	· · · · · · · · · · · · · · · · · · ·	

Step 2 Calculate cost per unit of output and losses.

First, find the disposal cost of	
loss. Total loss (2000-1750)-Units	250
Disposal costper unit -Rs.	2.00
	500.00

Then separate out the disposal cost between normal loss and abnormal	
loss. Disposal cost of normal loss (200 UnitsxRs.2)	400.00
Disposal cost of abnormal loss (50 UnitsxRs.2)	100.00

First deduct the disposal cost of normal loss to the cost of material.

Cost of input material	8,100.00
Disposal cost of normal loss	(400.00)
	7,700.00

Calculate cost per unit by dividing each cost element by expected output

	Total Cost	Cost per Unit
Material	7,700.00 (/expected output of 1800)	4.28
Labour & Overheads	10,000.00 (/expected output of 1800)	5.56
	17,700.00	9.84

Step 3 Calculate total cost of output and losses

Cost of output (1750 Unitsx Rs. 9.84) Cost of Normal Loss (200 Units x Rs. 2) Cost of Abnormal Loss (50Units x Rs. 9.84) 17,220 400 480 18,100.00

Step 4 Complete accounts

Accounts are completeded together with Process II accounts.

Process II

Step 1 Determine output and losses

i.	Determine expected output	
	(Units) Input	
	From Process I	1750
	Total Input	1750
	Expected loss @ 10%	(175)
		1575
ii.	Abnormal loss/gain (Units)	
	Expected output	1575
	Actual output	1600
	Abnormal gain	25

Step 2 Calculate cost per unit of output and losses.

Total scrap value of normal loss could have been (175Units x Rs 2) Rs.350. However, actual loss is less than normal loss and, therefore, scrap value is limited to (150 Units x Rs. 2) Rs.300. The difference between these two is the scrap value of the abnormal gain which can be claculated as shown below.

	Rs.
Scrap value of Normal Loss	350.00
Scrap value of Actual Loss	(300.00)
Scrap value of abnormal gain	50.00

As the actual loss is less than the normal loss, Rs. 50 worth of hidden cost is there. This can be considered as a loss of opportunity to earn Rs. 50 which was possible if the actual loss was equal to the expected/ normal loss.

,	Total Cost	Cost per Unit
Material from Process I	17220.00	
Additional Materials	1,900.00	
Scrap value of normal loss	(350.00)	
	18,770.00 (/expected output of 1575)	11.91
Labour & Overheads	22,000.00 (/expected output of 1575)	13.97
	40,770.00	25.88

Step 3 Calculate total cost of output and losses

Cost of output (1600 Unitsx Rs. 25.88)	41,408.00
Cost of Normal Loss (175Units x Rs. 2)	350.00
Cost of Abnormal Gain (25Units x Rs. 25.88)	(638.00)
	41,120.00

Step 4 Complete accounts

Process I							
	Unit	Price	Value		Unit	Price	Value
Input Material	2000		8,100.00			.,	
Labour and overheads			10,000.00	Output to Process II	1750	9.84	17,220.00
				Normal Loss	200	-	400.00
				Abnormal Loss	50	9.84	480.00
	2000		18,100.00		2000	_	18,100.00

Process II

			FIC	CESS II			
	Unit	Price	Value		Unit	Price	Value
From Process II	1750		17,220.00				
Input - Additional Material			1,900.00				
Labour and overheads			22,000.00	Output	1600	25.88	41,408.00
Abnormal Gain	25		638	Normal Loss	175	2.00	350.00
	3100		41,758		3100		41,758.00
			Scrap/	Normal Loss			
	Units	Price	Value		Units	Price	Value
Process I	200	2	400				
Process II	175	2	350	Cash	400	2.00	800.00
Abnormal loss	50	2	100	Abnormal Gain	25	2.00	50.00
			850.00				850.00
			Abn	ormal Loss			
			Value				Value
Process I			480.00	Abnormal Loss			100.00
				Profit & Loss Account			380.00
			480.00				480.00
			Abno	ormal Gain			
			Value				Value
Normal Loss/ Scrap Account				Process II			638.00
Profit & Loss Account			588.00				
			638.00				638.00
				≣'			

Eample 2

How do we value the finished goods and closing WIP using the following information if the entity uses weighted average cost method of valuation

Process Account							
	Units	Rs		Units	Rs		
Opening WIP	300	800					
Materials	700	5,400	Finished Goods	800	?		
Labour & overheads		2,850	Closing WIP	200	?		
	1,000	9,050		1,000	-		

Additional information

- i Closing WIP is 100% complete in terms of material
- ii Closing WIP is 25% complete in terms of labour & overheads
- iii Total cost Opening WIP consists Rs 550 direct material and Rs 250 labour and overheads.

Answer

When there is a closing WIP, it is required to apportion costs between output and closing WIP. Therefore, equivalent units concept is required to use here to convert closing WIP to equivalent fully completed units.

Step 1 Determine output and losses

		Equi	valent Units
	Total Units	Materilal	Labour & OH
Finished Goods	800	800	800
Closing WIP	200	200	50
	1,000	1,000	850

Step 2 Calculate cost per unit of output,losses, WIP.

	Material	Labour & OH
Cost incurred for the period	5,400	2,850
Cost of opening WIP	550	250
	5,950	3,100
Equivalent units of work done	1,000	850
Cost per Euivalent Unit	5.95	3.65

Step 3 Calculate total cost of output, losses and WIP

	Units	Material	Labour & OH	Total
Finished Goods	800	4,760	2,918	7,678
		(800*5.95)	(800*3.65)	
Closing WIP	200	1,190	182	1,372
		(200*5.95)	(200*25%*3.65)	
			_	9,050

Step 4 Complete accounts

Process Account

	Units	Rs		Units	Rs
Opening WIP	300	800			
Materials	700	5,400	Finished Goods	800	7,678
Labour & overheads		2,850	Closing WIP	200	1,372
	1000	9,050		1000	9,050

Example 3

The following information relates to Process 2 of three-stage production process for period X.

Material input from Process I Added Material Labour Overhead Actual Loss Opening WIP	unit Rs 2 Rs 4 Rs 3 800	5,000 Units @Rs 1.85 pe unit Rs 2,245 Rs 4,320 Rs 3,090 800 Units 600 Units		
Opening WIP complete as to:		Rs		
Material	100%	945		
Added Material	60%	180		
Labour	30%	405		
Overhead	30%	135		
		1,665		

1000Units of Closing WIP complete as to:

Material from Process 1	100%
Added Material	75%
Labour	40%
Overhead	20%

Expected loss is 10% of input materials and scrap value is 50 Cents.

Required

Prepare the following accounts

i Process II ii Normal Loss

iii Abnormal gain or loss

Normal loss (5000 Units x 10%)

Answer

Step 1 Determine output, losses, WIP

Actual Loss	800
So, abnormal loss	300
Output	
Opening WIP	600
Input Material	5000
Closing WIP	(1,000)
Actual Loss	(800)
Output to Process III	3800

Statement of equivalent units

·	Total Units	Proces I	Added	Labour	Overhead
		Material	Material		
Output to Process III	3,800	3,800	3,800	3,800	3,800
Normal Loss*	500	-	-	-	-
Abnormal Loss	300	300	300	300	300
Clossing WIP	1,000	1,000	750	400	200
		5,100	4,850	4,500	4,300

500

^{*} Cost of normal loss is absorbed by the output

Step 2 Calculate cost per unit of output,losses, WIP.

	Proces I Material	Added Material	Labour	Overhead
	Rs	Rs	Rs	Rs
Cost of opening WIP	94	l5 180	405	135
Cost incurred for the period*	9,00	00 2,245	4,320	3,090
Total cost incurred	9,94	15 2,425	4,725	3,225 A
Equivalent Units	5,10	00 4,850	4,500	4,300B
Cost per equivalent unit(A/B) Total cost of equivalent unit(Rs)	1.9 4.2		1.05	0.75

^{*} Material cost net of scrap vale of normal loss (9250- 500 units x 50 Cents)

Step 3 Calculate total cost of output, losses and WIP

		Proces I Material	Added Material	Labour	Overhead	Total
	Units	Rs	Rs	Rs	Rs	
Output to Process III	3800	7,410.00	1,900.00	3,990.00	2,850.00	16,150.00
Abnormal loss	300	585.00	150.00	315.00	225.00	1,275.00
Closing WIP(consider Equivalent Units)	1000	1,950.00	375.00	420.00	150.00	2,895.00
					_	20,320.00

Step 4 Complete accounts

Process II						
	Units	Rs		Units	Rs	
Opening WIP	600	1,665				
Process I Materials	5,000	9,250	Finished Goods	3,800	16,150	
Added Material		2,245	Normal Loss	500	250	
Labour		4,320	Abnormal loss	300	1,275	
Overheads		3,090	Closing WIP	1000	2,895	
	5,600	20,570		5,600	20,570	

Normal Loss Units Rs Units Rs 500 250 Cash 500 250 500 250 500 250

		Abnormal Lo	SS		
	Units	Rs		Units	Rs
Process II	300	1,275	Cash	300	150
			Profit & Loss		1,125
	300	1,275		300	1,275